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Abstract. In social modeling, a computational environment runs a model that 
represents the world. The states the model explores (its behavioral attractor) 
are typically fewer than its description suggests. The mapping between model 
and attractor depends not only on its parameters (exploring variants of the 
world) and its conventions (imposed by the computing environment), but also 
its mechanisms (components of the model representing selected dimensions of 
the world). We illustrate the impact of different mechanisms on the attractor. In 
our case, in general, the more mechanisms one implements, the smaller the at-
tractor (“the more you model, the less you see”), but with unexpected twists. 

Keywords: Agent Based Modeling, Social Simulation, Complex Dynamics, 
Model Parameters, Model Mechanisms, Behavioral Attractor. 

1 Introduction 

The user of a social model expects the model to generate a range of behaviors. For 
example, how many distinct behaviors can the actors manifest? How does their spatial 
distribution vary over time? The range of behaviors generated by a running model 
(the system’s behavioral attractor) is usually smaller than the static model suggests.  

The mapping between a model and its attractor can 
depend on three different sets of variables: parame-
ters, conventions, and mechanisms. Each of these 
describes a different component of the modeling en-
terprise, in which a computational environment runs a 
model that represents the world (Fig. 1).  

• Parameters describe the world that the model 
represents. Varying them explores how the world 
might behave if its characteristics (e.g., relative group sizes) change.  

• Conventions are unrelated to the real world but imposed by the computational envi-
ronment (such as agent execution order on a von Neumann machine or agent be-
havior at arena boundaries), and varying them explores the degree to which the be-
havioral attractor is an artifact of that computational environment.  

• Mechanisms are model components that reflect facets of the world. For example, 
real social actors have short term preferences and strategic goals that guide their 
choices, subject to constraints among available options and the actions of other ac-
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tors. Not every social model has a mechanism for each of these (preferences, goals, 
option constraints, interactions), and no social model has a mechanism for every 
possible dimension.  

Modelers assume that a model with fewer mechanisms than the world’s facets can 
still give useful information. Most modeling frameworks offer few alternative mecha-
nisms, seducing modelers to ignore the impact of mechanism choice. SCAMP (Social 
Causality using Agents with Multiple Perspectives) [13], a causal language and simu-
lator for social scenarios, has a rich array of mechanisms that can be activated inde-
pendently of one another. In general, the more mechanisms we activate, the smaller 
the attractor (“the more you model, the less you see”), but interactions among mecha-
nisms lead to anomalies. For instance, a more constrained attractor may lie partly 
outside less constrained ones with the same conventions and parameters. Adding 
mechanisms can not only sharpen the model’s focus, but also shift its location. 

These results are of immediate interest to teams who are using SCAMP. In addi-
tion, our methods should be helpful to other modelers in understanding the implica-
tions of their choice of mechanisms. Our exploration of SCAMP's dynamics is a con-
crete example of what might be done in other frameworks.  

Section 2 summarizes related work. Section 3 describes the mechanisms of 
SCAMP that these experiments vary. Section 4 describes our methodology. Section 5 
presents the experimental results. Section 6 discusses their implication for interpreting 
the results of a SCAMP run, highlights implications of this experiment for other so-
cial modeling systems, and outlines future work. 

2 Related Work 

We expect behavior to vary with model parameters, which are the focus of most stud-
ies of the dynamics of agent-based systems (e.g., [2-4,20]), including studies of tip-
ping points (parameter values where behavior changes discontinuously, leading to a 
phase shift) and lever points (parameters whose change has a lasting, directed effect) 
[1,15]. Wolfram [19] identifies four distinct classes of one-dimensional 0-1 nearest-
neighbor cellular automata, varying only the update rule, the key model parameter. 
Verification methods such as sensitivity analysis [5] (p. 24) or comparison of agent 
trajectories with observed data also explore behavioral changes when parameters 
change, but not the impact of changing conventions or mechanisms.  

Studies of the impact of conventions imposed by the computing environment are 
less common, but revealing. For example, a differential equation model and an agent-
based model can yield qualitatively different results for the same parameters [16,18]. 
Restricting ourselves to agent-based modeling, on a von Neumann machine, agents 
can run only one at a time, and different scheduling disciplines for entities that in 
reality execute concurrently have repeatedly been shown to lead to different results 
[6,8]. [9] reviews the extensive literature on the impact of scheduler synchrony. 

This study focuses neither on the parameters that vary the world explored by a 
model nor on the conventions imposed by computation, but on differing sets of mech-
anisms that the model uses to represent facets of the world. Naively, one hopes that 
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even a primitive model will be useful, and that adding more mechanisms will add 
more detail to the results of the initial model. Unexpectedly, such refinements can 
also move the focus, and cause other anomalies. We know of no other ABM work that 
demonstrates this effect, because most modeling frameworks do not offer multiple 
mechanisms that can be activated independently of one another. 

3 The SCAMP Causal Modeling System 

This section explains enough of SCAMP's structure to motivate our experiments. For 
further details, see [11,13]. Our experiments use two of SCAMP’s four perspectives. 

1. A causal event graph or CEG is a directed graph whose nodes represent types of 
events in which agents can participate.  

2. A hierarchical goal network or HGN is a directed acyclic graph that models the 
goals of a group of agents and how those goals are related to the levels of participa-
tion on events in the CEG. Leaf nodes in the HGN are linked, or zipped, to event 
nodes that either support or block them. 

The CEG has two sorts of edges: 

1. An agency edge from node A to node B means that an agent currently participating 
in an event of type A may consider an event of type B as its next activity. A chain 
of agency edges defines a plausible narrative of the agent's experience. Depending 
on its group membership, an agent has agency for a subset of the nodes in the 
CEG, and can move between two nodes only if it has agency in both of them. Most 
nodes have multiple successors, making the CEG a narrative space [14] that cap-
tures many possible narratives. The main output from a SCAMP model is the histo-
ry experienced by each agent. Agency edges are obligatory.  

2. Sometimes one event causally constrains another even though no agent has agency 
for both events. For example, an act of God such as a pandemic may hinder events 
in which people gather together, or enhance hospitalization events. SCAMP cap-
tures these relationships with influence edges. Influence edges are optional. 

When an agent completes one event in the CEG, it selects the next based on two vec-
tors. Each event has a feature vector that describes the event’s effect on agent wellbe-
ing, how urgent the event is to satisfying the HGNs to whose leaf goals it is zipped, 
and how extensively agents of each group have participated in it recently. Each agent 
carries a preference vector over the same space. To choose its next event, the agent 

1. computes the dot product of its preference vector and the feature vector of each ac-
cessible event type in the CEG, 

2. exponentiates each dot product so that it is non-negative, defining a roulette, 
3. adjusts the presence and size of segments with incoming influence edges based on 

the participation levels on events at the origins of those edges, 
4. and spins the roulette. 
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In step 3, a prevent or enable influence edge can remove or add an event to the rou-
lette that guides agent choice, changing the structure of the CEG dynamically as par-
ticipation levels on influencing events vary. 

Each agent adjusts its roulette before spinning by raising the size of each sector to 
its personal determinism level, modeling human deviation from pure rationality. An 
agent with determinism 0 makes completely random choices, while determinism 100 
models a utility optimizer. Our experiments set agent determinism to 100, while our 
baselines set it to 0 to generate a random walk. 

SCAMP uses polyagents [10], which represent each domain entity by a single ava-
tar that can deploy a swarm of ghosts. The ghosts explore their avatar's possible next 
choices by looking ahead a fixed distance (here, two events). At each step, they form 
a roulette over all nodes in the CEG that are immediate successors to their current 
node, choose one node, and increment the node’s presence feature for their group 
proportional to the value of the position in which they find themselves. The avatar 
chooses its next step by choosing probabilistically based on the presence features 
deposited by its ghosts. This mechanism simulates the well-documented psychologi-
cal process of evaluating actions by mental simulation of possible outcomes [7]. 

We base our experiments on a model of civil strife inspired by recent history in 
Syria. The CEG in this model includes 460 event nodes with 1106 agency edges and 
400 influence edges. The six HGNs, one for each group, include 122 goals or sub-
goals. 77 leaf goals are zipped to 177 event nodes. 

4 Experimental Methodology 

Our methodology has three parts.  

1. Define how to measure the space of behaviors.  
2. Identify the mechanisms that an instance of the model supports. A given set of 

mechanisms defines a configuration. We are interested in how the size of behavior 
space varies with the configuration. 

3. Identify a configuration to represent an unconstrained baseline. 

4.1 Defining Behavior Space 

An analyst constructing a SCAMP model starts with the CEG, defining types of 
events that might occur in the domain and linking them into reasonable narratives for 
agents belonging to different groups. One useful measure of behavior space is how 
many of these event types the system actually explores. Two levels of exploration are 
meaningful. The first counts node coverage, in several ways: 

1. How many nodes do ghosts visit in evaluating possible futures for their avatars?  
2. How many nodes do ghosts consider in evaluating possible futures for their ava-

tars? These are successor nodes to those nodes that the ghosts actually visit. 
3. How many nodes do the avatars visit in carrying out their decisions?  
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We measure these values for multiple runs of each configuration, with different ran-
dom seeds. In this paper, we run at least six runs per configuration. 

We also look at how similar the sets of nodes under each measure are for repeated 
runs with different random seeds. Let Q and R be the sets of nodes explored (under 
one of the options above) for two runs of the same configuration, and let S be the 
union of the sets explored by both runs. Then the overlap between Q and R is 
|𝑄 ∩ 𝑅| (|𝑄| + |𝑅| − |𝑄 ∩ 𝑅|)⁄ .  

We hypothesize that as we add mechanisms, the numbers of distinct nodes in each 
category will drop (the attractors will shrink) while the overlaps will increase, because 
the system will be attracted into the same region of state space. As we will see, the 
data hold some surprises that yield important insight into the system’s behavior. 

These measures do not by any means exhaust those that could be considered. Since 
a commonly used output of SCAMP is the set of behavioral trajectories followed by 
the agents, one very relevant measure is the number of distinct trajectories that avatars 
execute. We leave that analysis for future work. 

4.2 SCAMP’s Mechanisms 

SCAMP offers several mechanisms to capture different dimensions of the world.  
The most basic is the structure of the agency edges in the CEG, which record the 

meaningful behavioral trajectories available to agents. Even if agents execute random 
walks, the branching factors differ along different paths, so that nodes only accessible 
along highly branched paths will have a lower probability of being sampled in a run 
of a given length than those with less ramified approaches.  

The mean node degree restricted to agency edges in our example CEG is 4.74, not 
much more than the limit of 4 for an infinite square lattice, but degree in the CEG is 
highly variable. Consider a synthetic baseline of 460 integers randomly selected from 
[3, 6]. The mean is 4.5, comparable to our data, but Pearson’s kurtosis for this syn-
thetic baseline is 1.64, well below the threshold of 3 associated with normally distrib-
uted data. For our CEG, the kurtosis of node degree is 8.7, reflecting the heavy tail of 
nodes with high degree (up to a maximum degree of 21). 

For comparison, we construct a rectangular directed lattice of 21*22  = 462 nodes, 
over which we do a random walk (with both ghost and avatar determinism set to 0). A 
random walk on a regular lattice with restart will visit every node, if it runs long 
enough. We expect the CEG to perform similarly. We also do a random walk over the 
CEG model itself, augmented with a single START and a single STOP node. 

Psychological preference is modeled by the feature space that defines agent prefer-
ences and event features. Without preferences, ghosts perform a random walk in lay-
ing down the presence features that guide avatars. With preferences, ghosts will favor 
some nodes over others, based on the features that the model builder has defined for 
those nodes. We expect a) agents using preferences will explore fewer nodes than 
those walking randomly, b) overlap across runs will be greater with preferences than 
without, and c) the longer the model runs, the more nodes will be visited. 

SCAMP’s HGNs model strategic reasoning. Each HGN monitors the recent partic-
ipation level on event types to which it is zipped to assess its current satisfaction, then 
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computes the urgency feature of each of these events. Agents respond to urgency 
according to their preferences. If an agent is running without preferences, the HGN is 
irrelevant. But if preferences are active, we expect HGNs to focus the agents’ atten-
tion, reducing the number of nodes explored and increasing their overlap. 

Influence edges model causal influences among event types between which agents 
do not move directly, modulating the probability of destination nodes dynamically 
based on participation levels on source nodes. Again, including this mechanism 
should reduce the number of nodes visited and increase their overlap. 

A configuration is a binary string indicating active mechanisms. The first position 
shows whether (1) or not (0) preferences are active. The second position shows 
HGNs, and the third, the use of influence edges. Thus in 000, the only mechanism is 
the structure of agency edges, 100 indicates the use of preferences alone, 110 adds 
HGNs, and 001 is the use of influence edges alone. The decimal values of these 
strings identify configurations 0 (no mechanisms active) to 7 (all mechanisms active). 
Configurations 2 and 3 (HGNs without preferences) violate the assumptions of the 
model and are not included. Configurations 4-7 include 
preferences, configurations 6 and 7 include HGNs, and 
odd configurations include influence edges. Our config-
urations thus form a partial lattice (Fig. 2). All configu-
rations use the same parameters to describe the world 
and run with the same conventions. 

4.3 Random Baseline 

In addition to a space within which the attractor is defined and mechanisms that might 
impact the attractor, we need a baseline against which to compare their impacts. We 
provide two baselines, L (the 21*22 lattice) and R (the CEG), with both ghost and 
avatar determinism set to 0 so that they ignore the roulette entirely. In configuration 0, 
unlike R, avatars have determinism 100, and follow their (randomly moving) ghosts. 

5 Results 

Our experiments illustrate how studying the behavioral attractor as a function of mod-
el mechanisms can yield valuable insights that confirm or correct our intuitions and 
call attention to behaviors that invite further study. Our study is exploratory, and we 
present most results as boxplots [17].1 In some cases, we compute the significance of 
pairs of results using the one-sided Mann-Whitney U test. p-values greater than 0.05 
are reported as not significant.  

We begin with summary plots that characterize the data and show the impact of run 
length on our measures. Then we examine how visits and overlaps vary with configu-

 
1  The box extends from the upper to the lower quartile of a data series. The bold line marks 

the median. The whiskers extend to the most distant data points within 1.5 times the inter-
quartile range of the quartile limits, and circles mark outliers. Comparing the inter-quartile 
boxes for two series is a good heuristic for whether they are the same or different. 

 
Fig. 2. Configuration lattice: 

001 = influences, 010 = 
HGN, 100 = preferences 
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ration, to see how adding mechanisms affects agent activity. Finally, we offer some 
summary statistics on the impact on our metrics of the three mechanisms we are stud-
ying: preferences, HGNs, and influence edges. 

5.1  Making Friends with the Data 

First, compare the coverage and overlaps 
(Fig. 3) of each measure (avatar visits 
(av), ghost visits (gv), and successors 
considered by ghosts (sc)) for the base-
line configuration (000 ~ 0) and the 
most constrained (111 ~ 7). Ghosts visit 
fewer nodes than they consider, and 
avatars visit only a small fraction of 
those explored by ghosts. Added mecha-
nisms reduce the number of nodes that 
the ghosts consider and visit, as ex-
pected, but the number of nodes visited 
by avatars is unchanged. Additional 
mechanisms focus the ghosts’ attention 
more closely, but however broadly or 
narrowly the ghosts explore, an avatar 
chooses one path from those explored by its ghosts, and in a run of fixed length visits 
only a limited number of nodes. The avatar nodes are not the same in the two configu-
rations, but by the structure of the program the coverage is the same size. 

We expect overlap to increase with mechanisms, as agents focus their attention on 
fewer nodes. Fig. 3 confirms this intuition for avatar visits, but overlaps for ghost vis-
its and successors actually decrease, a phenomenon we discuss in Section 5.3. 

In a regular directed lattice, cov-
erage increases with run length. 
Most of our results are runs of 1000 
Repast ticks. Fig. 4 shows the effect 
of increasing run length to 2000. We 
compare configuration 0 with 4, 
which (we will see) is particularly 
influential. In x-axis labels, the first 
digit (0, 4) is configuration, and the 
second (1, 2) is run length in k-ticks. 
The intuition is correct for avatar visits, and for ghost visits and successors in configu-
ration 0. But for configuration 4, the preference mechanism leads the system to con-
verge, and longer runs do not increase ghost visits or successors. 

The median value of sc01, 306, leaves 162 event types in a typical run that the 
ghosts never consider. However, these 162 CEG nodes are not the same in each run. 
The median overlap is about 90%, and many runs show lower overlaps between pairs 

 

 
Fig. 3. Nodes Visited (Left) and Overlaps 
(Right) by Types and Configurations 

 
Fig. 4. Effect of Run Length on Coverage 



8 

of runs for each configuration. For example, while the maximum successor nodes in 
any single run of configuration 0 is 325, all of the runs together explore 343 nodes. 
This still misses 117 nodes of the complete CEG, but suggests that multiple runs are 
at least as important as run length in sampling the causal graph adequately.  

5.2 Impact of Adding Mechanisms 

Fig. 3 shows a clear reduction in cover-
age for successors and ghost visits be-
tween runs with no mechanism except 
the CEG, and all mechanisms. Fig. 5 
shows intermediate configurations. 
Ghost visits show the same pattern. 

In the baselines, random walk on a lattice (configuration L) offers fewer successors 
to consider (and thus fewer ghost visits) than on the CEG (configuration R), reflecting 
the long tail in our model’s degree distribution. Successors and ghost visits on base-
line R are higher than with any mechanisms, which is not surprising.  

As expected, both measures tend to decrease as we add mechanisms. Two details 
are particularly interesting.  

1. The drop from configurations 0 and 1 (no preferences) to configurations 4-7 (with 
preferences active) is particularly large, suggesting that preferences have more in-
fluence on the system than do HGNs or influence edges.  

2. Configuration 6 (preferences and HGNs without influence edges) appears to be 
lower than the more highly constrained configuration 7 (which adds the influence 
edges). This unexpected result shows an unanticipated but realistic interaction be-
tween the two mechanisms. An agent’s goals (in life and in SCAMP) guide its ac-
tions by identifying high-priority events in which the agent should participate, and 
the usefulness of goals will decrease if other events block access to those urgent 
events through influence edges. 

In contrast to successors and ghost visits, avatar visits do not change with more mech-
anisms. This observation is consistent with Fig. 3: while ghosts can explore more or 
less narrowly, each avatar follows only 
one path, and thus visits only a rela-
tively constant number of nodes for 
runs of a given length. 

Adding constraints not only de-
creases attractor size (for gv and sc), 
but also shifts its location. Define the 
alignment of one configuration with 
another with a subset of its mecha-
nisms (say, 101 with 100, 001, or 000) 
as the percent of events in its attractor 
with that of the less constrained con-

 
Fig. 5. Successors by configuration 

 
Fig. 6. Alignment of Successive Constraints:  

square = av, dot = gv, triangle = sc 
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figuration. Fig. 6 shows the alignment of each configuration more constrained than 
000 with all of its predecessors in the configuration lattice (Fig. 2), for all three 
measures (triangle = sc, dot = gv, square = av). (The top two squares for 101 have the 
same value.) As it happens, the highest alignment for each configuration (including 
av) is not with its immediate predecessor in Fig. 2, but with 000. We expect alignment 
of 1 (indicating that the attractor for more mechanisms falls entirely within that for 
fewer), but except for sc for 001, 101, and 110, the more constrained attractors have 
lower alignment. This result challenges the common assumption that unmodeled fac-
ets of the real world result in a more fuzzy but still essentially correct outcome. In 
fact, adding mechanisms for these facets could shift the model’s output. 

5.3 A Closer Look at Overlap 

In addition to monitoring the coverage of nodes considered or visited (our approxima-
tion of a model’s attractor), it is also useful to study the variation among the sets of 
nodes visited in different runs of the same configuration. Intuitively, we expect over-
lap to increase with number of mechanisms. This intuition must be qualified. 

With significance p = 2E-16, avatar visits have lower overlap than ghost visits, and 
ghost visits have lower overlap than successor coverage. We hypothesize that this 
difference reflects the fact (Fig. 3) that there are far more successors than ghost visits, 
and far more ghost visits than avatar visits, out of a fixed number of nodes. Higher 
coverage of the CEG leaves fewer nodes on which runs can differ with each other.  

Fig. 7 shows how avatar and suc-
cessor overlaps vary with configura-
tion. Avatar overlap satisfies our intui-
tion that with more mechanisms guid-
ing agents into similar regions of the 
CEG, overlap should increase. Con-
sistent with this dynamic, the baseline 
configurations L and R, with both 
ghosts and avatars executing random 
walks, have the lowest overlaps. Con-
figuration 6 yields the highest overlap. 
Adding influence edges in configura-
tion 7 reduces overlap, reflecting their 
interaction with HGNs. 

Ghost overlap (not shown) is less 
intuitive. Overlaps between the sets of 
nodes visited by ghosts in different 
runs of the same configuration are 
invariant with configuration, and do 
not significantly differ from the baselines. 

Overlaps in the successor metric are even more complex. Setting aside the random 
walks L and R, the overlaps actually decrease with added mechanisms! As with the 
successor and ghost visit coverage metrics, there appears to be a particularly sharp 

 

 
Fig. 7. Overlaps by Configuration 
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drop with configuration 4, when agent preferences become active. Again, the power 
of HGNs in drawing agents together is clear in the increased overlap in configuration 
6, but faces interference from influence edges in configuration 7. 

The overall negative correlation between successor overlap and number of mecha-
nisms is surprising. Perhaps the mechanisms lead the agents into parts of the CEG that 
they otherwise would not visit. Preferences in particular can lead agents to prefer 
highly branching regions that otherwise would be relatively inaccessible. In such a 
region with high node degree, SCAMP’s stochastic roulette selection can push differ-
ent runs in different directions, increasing successor coverage and thus reducing over-
lap. Modelers who assign favorable features to some events may unconsciously focus 
more attention on them and ramify the paths to which they lead more than they do for 
other events, a form of modeling bias of which they should be aware. 

5.4 Impact of Individual Mechanisms 

Table 1 compares the effect of the prefer-
ence and HGN mechanisms, aggregated 
over all configurations, against the base-
line. In this table, an entry of the form “>, 
0.04” means that the row variable is larger 
without the column mechanism operating 
than with it, with significance p=0.04. “<” 
means that the unconstrained value is smaller than the constrained one, and “NS” 
means that the p-value is greater than 0.05. The aggregate impact of influence edges 
for all variables is NS. 

Preference has the most widespread impact of all mechanisms, affecting every 
measure except ghost overlaps, and it reduces all measures that it affects except over-
lap among avatar visits, which it increases. The increase of avatar visit overlap is in 
line with our initial hypothesis: the more mechanisms constrain the model, the fewer 
different nodes agents will visit, and the more those sets of nodes will resemble each 
other across runs. The decrease of successor overlap is puzzling, but confirms the 
impression we drew from Fig. 7. 

HGNs are the next most influential mechanism, increasing visits (except for avatar 
visits) and decreasing overlaps (except for successor overlaps). 

Though in the aggregate influence edges do not have significant impact on these 
measures, they can reduce the contribution of HGNs by limiting agent access to types 
of events that the HGN identifies as urgent. 

6 Discussion and Future Work 

Our specific results are of great interest to users of SCAMP, but our message is im-
portant for the responsible use of any agent-based modeling framework, in two ways. 
1) Programmers and modelers have a sense of the range of possibilities covered by 
their models, based on the static structure of those models. The actual attractor visited 

Table 1. Mechanism impact on coverage 
Variable Preferences HGNs 
Ghost Visits >, 7E-7 >, 1E-5 

Ghost Overlaps NS <, 0.01 

Avatar Visits >, 2E-4 NS 

Avatar Overlaps <, 1E-9 <, 1E-9 

Successors >, 7E-7 >, 2E-5 
Successor Over-
laps >, 8E-8 NS 
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by the model when it runs may be much smaller. Users need to understand the effec-
tive coverage of a model under different conditions, and modelers need to understand 
how adding mechanisms is likely to impact that coverage. Sometimes users will want 
to increase coverage to consider more possible outcomes; in other cases they will 
want to decrease it to focus on the most likely outcomes. 2) Adding mechanisms to 
capture more dimensions of the real world can not only provide a more focused result, 
but also shift the location of that result in state space. 

For ourselves, these results suggest several directions for future work that would 
not be evident in the absence of this analysis. 

• Validate our hypotheses about what features of SCAMP (e.g., widely varying 
branching factors?) lead to premature focusing, and develop guidelines for model-
ers who use SCAMP to avoid unrealistic expectations about how aware the system 
actually is of all the alternatives they are constructing. 

• Explore in more detail what leads to some of the counterintuitive behaviors we 
have discovered, such as the interaction of HGNs and influence edges, and the de-
crease in successor overlap as we add mechanisms. 

• Formally, a system’s attractor is the region of state space to which it is constrained 
after initial transients have died out. Our data comes from complete runs, and ig-
nores possible noise from start-up conditions. The start-up period can be identified 
by plotting the entropy of the roulette constructed by each agent as a function of 
time [12]. Applying this measure to the analysis in this paper is more challenging 
than in our previous application of it, but would refine our results. 

• The notion of an attractor is only one of several physics-based concepts that can 
elucidate the dynamical behavior of a social simulation. We are exploring others, 
such as the graph spectra of emergent social networks . 

• At several points, coverage and overlap measured by avatar visits behave very 
differently than ghost visits and successor counts. Most reports we generate for us-
ers concern the movement of avatars, and we have viewed the ghost mechanism 
and successor structure of the CEG as internal details that are not relevant to ana-
lysts, but clearly they are important in assessing the model’s dynamic coverage, 
and we will explore ways to communicate this information to users. 

References 

Publications by the author are available at https://www.abcresearch.org/abc/papers. 
[1] Brueckner, S., Parunak, H.V.D.: Information-Driven Phase Changes in Multi-Agent 

Coordination. In Proceedings of Workshop on Engineering Self-Organizing Systems 
(ESOA, at AAMAS 2005), pp. 104-119, Springer (2005) 

[2] Butner, J.E., Wiltshire, T.J., Munion, A.K.: Modeling Multi-Agent Self-Organization 
through the Lens of Higher Order Attractor Dynamics. Frontiers in Psychology, 
8:380 (2017) 

[3] Cenek, M., Dahl, S.K.: Geometry of behavioral spaces: A computational approach to 
analysis and understanding of agent based models and agent behaviors. Chaos: An 
Interdisciplinary Journal of Nonlinear Science, 26(11) (2016) 



12 

[4] Falandays, J.B., Smaldino, P.: The Emergence of Cultural Attractors: An Agent-
Based Model of Collective Perceptual Alignment. Annual Meeting of the Cognitive 
Science Society, vol. 43,   2021) 

[5] Gilbert, N., Troitzsch, K.G.: Simulation for the Social Scientist. 2 ed. Buckingham, 
United Kingdom, Open University Press (2005) 

[6] Huberman, B.A., Glance, N.S.: Evolutionary Games and Computer Simulations. 
Proceedings of the National Academy of Science USA, 90(16):7716-7718 (1993) 

[7] Kahneman, D., Tversky, A.: The Simulation Heuristic. In Kahneman, D., Slovic, P., 
Tversky, A. (eds.) Judgment under Uncertainty: Heuristics and Biases, pp. 201-208. 
Cambridge University Press, Cambridge, UK (1982) 

[8] Mudigonda, S., Núñez-Corrales, S., Venkatachalapathy, R., Graham, J.: Scheduler 
dependencies in Agent-Based Models: A case-study using a contagion model. 
Computational Social Science Society of the Americas,   Springer, Santa Fe, NM 
(2021) 

[9] Núñez-Corrales, S., Friesen, M., Srikanth, M., Venkatachalapathy, R., Graham, J.: In-
Silico models with greater fidelity to social processes: towards ABM platforms with 
realistic concurrency. Computational Social Science Society of the Americas,   
Springer, Santa Fe, NM (2020) 

[10] Parunak, H.V.D., Brueckner, S.: Concurrent Modeling of Alternative Worlds with 
Polyagents. the Seventh International Workshop on Multi-Agent-Based Simulation 
(MABS06, at AAMAS06),  pages 128-141,  Springer, Hakodate, Japan (2006) 

[11] Parunak, H.V.D., Morell, J.A., Sappelsa, L., Greanya, J.: SCAMP User Manual. 
Parallax Advanced Research, Beavercreek, OH (2020). 
https://www.abcresearch.org/abc/papers/SCAMPUserManual.zip 

[12] Parunak, H.V.D.: Learning Actor Preferences by Evolution. Computational Social 
Science (CSS21),   CSSSA, Santa Fe, NM (2021) 

[13] Parunak, H.V.D., Greanya, J., McCarthy, M., Morell, J.A., Nadella, S., Sappelsa, L.: 
SCAMP’s Stigmergic Model of Social Conflict. Computational and Mathematical 
Organization Theory,  (2021) 

[14] Sappelsa, L., Parunak, H.V.D., Brueckner, S.: The Generic Narrative Space Model as 
an Intelligence Analysis Tool. American Intelligence Journal, 31(2):69-78 (2014) 

[15] Savit, R., Brueckner, S.A., Parunak, H.V.D., Sauter, J.: General Structure of 
Resource Allocation Games. Altarum, Ann Arbor, MI (2002). 
https://www.abcresearch.org/abc/papers/RAGpaper.pdf 

[16] Shnerb, N.M., Louzoun, Y., Bettelheim, E., Solomon, S.: The importance of being 
discrete: Life always wins on the surface. Proc. Natl. Acad. Sci. USA, 97(19 
(September 12)):10322-10324 (2000) 

[17] Tukey, J.W.: Exploratory Data Analysis. Addison-Wesley (1977) 
[18] Wilson, W.G.: Resolving Discrepancies between Deterministic Population Models 

and Individual-Based Simulations. American Naturalist, 151(2):116-134 (1998) 
[19] Wolfram, S.: Cellular Automata and Complexity: Collected Papers. Reading, MA, 

Addison-Wesley (1994) 
[20] Zia, A., Koliba, C.: The emergence of attractors under multi-level institutional 

designs: agent-based modeling of intergovernmental decision making for funding 
transportation projects. AI & Society, 30(3):315-331 (2015) 


