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Abstract. In most information retrieval systems, software processes (whether 
agent-based or not) reason about passive items of data. An alternative approach 
instantiates each record as an agent that actively self-organizes with other 
agents (including queries). Imitating the movement of bodies under physical 
forces, we describe a distributed algorithm (“force-based clustering,” or FBC) 
for dynamically clustering and querying large, heterogeneous, dynamic collec-
tions of entities. The algorithm moves entities in a virtual space in a way that 
estimates the transitive closure of the pairwise comparisons. We demonstrate 
this algorithm on a large, heterogeneous collection of records, each representing 
a person. We have some information about a person of interest, but no record in 
the collection directly matches this information. Application of FBC identifies a 
small subset of records that are good candidates for describing the person of in-
terest, for further manual investigation and verification.  

Keywords: clustering; transitive mapping; self-organizing information; active 
data 

1 Introduction 

Many real-world search problems require inexact matches against heterogeneous data 
sources, where no single data source can answer the query. For example: 

An unidentified male visits a clinic, signing in with an illegible signature and 
partially illegible phone number, then leaves the clinic before being seen. Later, 
staff discovers that another patient has symptoms of an influenza-like illness con-
sistent with a potentially deadly and highly contagious virus. Staff initiates quar-
antine to limit close contact until the laboratory confirms diagnosis. In reviewing 
the sign-in log, staff discover the visitor’s entry. Patients and staff cannot recall 
any supporting information about the unidentified individual, who is at risk and 
must be identified as quickly as possible. 

An anonymous sponsor provided us with eight databases (DBs) (Table 1), contain-
ing varying combinations of name, address, phone number, and DB-specific record 
identifiers (Doc-IDs) for fictitious individuals, but concealing the identity of the POI. 
SRLU has 130 records, and the others have on the order of 50,000 each. Cursory 
examination shows that some keys are shared both within and across databases, and 
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some names appear to be variant spellings (e.g., “Tom F. Tuk” and “Tolman Fredegar 
Took” share other information). Only the last two digits of the phone number are 
illegible, but 104 records have phone numbers that could match the available number, 
some associated with different names or addresses, suggesting errors in the data. The-
se phone numbers are in states different than the clinic. Our task is to develop a priori-
tized list of people with contact information whom authorities should contact in order 
to reach the mystery patient as quickly as possible. 

Constructing and reasoning over such scenarios is combinatorially prohibitive, and 
too slow for emergencies (such as tracking an epidemic or disrupting a terrorist at-
tack. Force-Based Clustering (FBC) instantiates each record as a software agent in an 
abstract low-dimensional space (a three-dimensional torus wrapped in four dimen-
sions). The agents compute virtual “forces” among themselves, and move in response 
to those forces. The transitivity of these forces brings together agents whose similarity 
may not be documented directly, but that are linked by a chain of similar agents. 

Section 2 defines our algorithm. Section 3 relates it to other techniques. Section 4 
reports its performance. Section 5 concludes.  

2 Technical Approach 

We summarize the motivation for and implementation of FBC. 

2.1 Motivation 

FBC is motivated by physical forces, which show several characteristics: 

• If entities are close, they repel one another (mutual exclusion). 
• If they are far apart, their interaction rapidly decreases (depending on the physical 

force involved, as the square or even higher powers of the separation). 
• Multiple types of forces can contribute concurrently to interactions. 

Each record in our database is an agent. We distribute them in an abstract space, 
define virtual forces among them, and let them move. Similar records move closer to 
one another, pulling their neighbors with them (and thus providing transitive closure). 
We query the system by inserting a query record that contains what we know about 

Table 1: Databases.—A ‘?’ indicates that the field is present in only some records of the DB. 

DB 
name 

Available Fields 
Last 

name 
Middle 
name 

Middle 
initial 

First 
name 

Street 
# 

Street City State Zip Phone Doc ID 

CCCR X X  X X X X X X  X 
CCTR     X X X X X  X 
HPA X   X  X X X X   
HR     X X X X X X  
ID X X  X X X X X X  X 
SRLU X  X X X X X X X X  
TR X  ? X      X X 
WP X   X X X X X X X  



Transitive Identity Mapping using Force-Based Clustering  3 

the POI, letting the system converge, and retrieving records that end up close to the 
query. The closer a record is to the query, the higher we rank it in our list of persons 
to contact. This approach emulates physical movement: 

• Extremely close agents repel one another, keeping similar records from collapsing 
to the same location, in spite of attractive forces among them.  

• The decrease of interaction strength with distance means that most interactions are 
among nearby agents. This locality of interaction facilitates convergence of any 
digital algorithm for computing agent movement. Physical forces act all at once, 
but an algorithm must manipulate a subset of agents at each time step. Local inter-
actions reduce the set of agents with which a given agent effectively interacts, al-
lowing their influence to be felt in fewer steps.  

• The concept of multiple forces lets us handle heterogeneous records with varying 
field contents, by defining a “last-name force,” an “address force,” and a “phone-
number-force.” Integration of these forces through agent movement allows transi-
tive interactions among records that do not directly overlap. For example, imagine 
that record A has only address and DB key information (database “CCTR”), B has 
address and name (“CCCR”), and C has name and phone number (“TR”). The “ad-
dress force” will bring A and B together, the “name” force will bring B and C to-
gether, and as a result, A and C come close together, suggesting a link between the 
phone number in C with the DB key in A.  

2.2 Implementation 

Our implementation includes similarity computation, force definition, distributed 
execution, and convergence detection. 

Similarity Computation 
From the union of the fields in the databases, we define nine complex attributes in [0, 
1], each derived from one or more raw attribute fields. These rules take care of miss-
ing simple attributes (e.g., a full-name complex attribute with no middle name) and 
may also employ external data sources in the similarity calculation. The overall simi-
larity between two records is a weighted sum of the component similarities. 

The similarity computations and weights we assign to each complex attribute re-
flect our understanding about the contribution each can make to the challenge.  
Edge.—The data set provides not only ~350k records, but also a pre-computed set of 
~58k similarity-weighted edges based on the record attributes. The “Edge” complex 
attribute is the total composite score of two records as recorded in this table. If the 
table does not specify an edge between two records, their “Edge” similarity is zero. 
Source.—Though we do not know the meaning of the various databases, we must 
combine them to achieve transitive closure. Differences in record structure may re-
duce the similarity score based on substantive fields. To encourage exploration of 
cross-databases similarities, we assign a similarity component of 1 between two rec-
ords if their sources are different, and 0 if they are the same.  
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Full Name.—A person’s name is the most specific and semantically meaningful iden-
tifier. Between two “Full Name” attributes we compute the similarity based on the 
presence and match of the three component strings (0.5 for last name match, an addi-
tional 0.3 for first name match, and a final 0.2 for a middle name match). Our current 
implementation determines a name component match solely on (ignore-case) string 
identity; applying Soundex [12] is a natural extension.  
US State.—The “State” attribute of a record offers a rough indicator of its geographic 
location. We define a static similarity measure between all states based on the normal-
ized geographic distance of the latitude/longitude of their capitals. Records with iden-
tical state identifiers have a similarity of 1. Records for states with the largest geo-
graphic distance of capital cities, or records that do not identify a (known) state, all 
have a similarity value of 0. Other similarity values are proportional in-between. 
Zip.—The US postal code system offers a finer approximation of the geographic 
location of this record than the US-State attribute. Similarity between two Zip attrib-
ute values is first established by identity (similarity=1). If the Zip codes are not iden-
tical but both populated, their similarity is based on the [0, 1] normalized geographic 
distance of the latitude/longitude coordinates of their respective geodesic centers. 
Unpopulated records result in a similarity of zero. 
Full Address.—The “Full Address” complex attribute combines our various geo-
graphic estimates of the location a record references. Complete or partial matches of 
the components of the Full Address accumulate similarity contributions. Matches for 
State and Zip entries are provided by their respective complex attribute wrappers. City 
and street name strings are either identical or not. If street names are identical, then 
highly similar house numbers provide a small similarity bonus. 
Phone.—Our only concrete identifier for the POI is a phone number, but the database 
contains some duplicate numbers, suggesting either shared phones or erroneous data. 
We accumulate units of similarity by first assessing the similarity of the area codes, 
then the prefix similarity, and finally the line code similarity. In this sequence, when-
ever there is not an identical match, further similarity accumulation will stop. For 
instance, there is no reason to compare line codes with different prefixes. If the area 
codes of two records already do not match, we use an external database of lati-
tude/longitude coordinates of major cities or towns in the geographic coverage of the 
area code to provide a partial area-code similarity measure. 
Gender.—The POI is male. While there is no explicit “Gender” field in the databases, 
the first name of a person, if provided, does provide an estimate of the likely gender. 
We extracted a database of 48k international first names that estimates likely gender 
as one of 5 values: Strongly Female, Possibly Female, Unknown, Possibly Male, 
Strongly Male. Using string matching with the provided First Name, we assign each 
record one of these five genders. If the first name is missing, we assign Unknown. 
This name database gives substantial coverage of the records in the challenge data set, 
once we add the genders of the main characters of J.R.R. Tolkin’s Lord of the Rings 
trilogy. We manually defined a 5x5 similarity matrix between the gender identities, 
assigning a similarity of 1 for matching Strongly Female or Male records and decreas-
ing similarity for more distant fields in the gender identity ordering. 
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ID-DOC.—We do not know the meaning of the ID-DOC keys, but a cursory survey 
of the data shows that some of these are shared, both within and across databases. 
Binary string similarity (0 or 1) is assessed. 

Force Definition 
The force between two agents has two components: one repulsive and one attractive. 
Each force is computed using the convex distance scaling function 

𝑔 𝑑,𝑚, 𝑠 =
𝑒!

!!!
! − 1
𝑒! − 1

 

where  

• d is the shortest distance on the torus between the two agents, 
• m is the maximum distance on the torus, 
• s is a shaping factor; as s increases, force drops off more rapidly.. 

For similarity φ between two agents, the force is 
𝑓 𝑑,𝜑 = 𝑤!  𝑑  𝑔 𝑑,𝑚, 𝑠! 𝜑 −   𝑤!  𝑚  𝑔 𝑑,𝑚, 𝑠!   (1 − 𝜑) 

Figure 1 plots this force for sr = 5, sa = 6, wa = wr = 1, φ = .97, with repulsion at 
low separations, low force at large separations, and attraction in between. The force is 
multiplied by a maximum step length to give the distance that the agent moves in the 
direction of the agent with which it is being compared. The larger the step length, the 
more agents move on each iteration, but the more danger there is of thrashing. 

Distributed Execution 
We apply FBC repeatedly to pairs of points. Convergence is smoothest if step length 
is modest, which in turn requires each pair of points to be evaluated repeatedly. Ap-
plication of this algorithm to a large number N of points thus involves O(N2) opera-
tions, which can be prohibitive for very large datasets. 

The processes in our experiments execute asynchronously against a centralized 
DB. Each time a process is invoked, it 

• Retrieves C points and their locations from the database (in our experiments, C = 
35; all except queries are randomly cho-
sen); 

• Applies the FBC algorithm to all pairs of 
points in the sample, and computes new lo-
cations for them; 

• Writes the points back into the database. 

A process remembers the k closest agents to a 
query agent that it has seen. The results of the 
clustering search can be retrieved by merging 
these lists across processes. 

FBC scales linearly in both space and time 
in the number of processors, and offers a  

Figure 1: Example of computed force  
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quadratic benefit over a naïve algorithm, regardless of the degree of distribution. Let  

• N = the number of agents; 
• m = the number of processors; 
• C = the number of points clustered by each processor at one time; 
• d = the maximum step length an agent can take in a processing cycle, expressed as 

a fraction of the maximum distance D on the torus. 

Consider the quadratic benefit first. A naïve approach computes the similarity of 
each agent to all other agents, for complexity O(N2). In FBC, an agent is closely at-
tracted to a group of g other agents, and each interaction between two agents approx-
imates g2 interactions, reducing the complexity by a factor of (N/g)2. 

Massive data invites distribution. We expect time complexity to scale linearly with 
the number of processors. On average, assume that each agent starts out D/2 from its 
optimal location. Then an agent needs O(1/(2d)) interactions to reach its destination. 
For simplicity of analysis, assume that processes run synchronously. The probability 
of an agent being selected in a processing cohort is mC/N. Each selection yields C 
interactions, so an agent can anticipate mC2/N interactions per processing round, thus 
requiring N/(2dmc2) processing rounds to move to its optimal location. Each round 
takes O(C2) time, so the total processing time is N/(2dm), independent of C.  

FBC processes run asynchronously, so two processes may simultaneously move 
the same point, and only the last one to write to the database will be preserved. The 
chance of a record being in a given clustering process is C/N. The chance that we get 
some record—any record—in two processes concurrently is N*(C/N)2 = C2/N. The 
number of possible pairs of processes is mC2, so the probability of collision is 
𝑚
2 𝐶!/𝑁, which for C = 35, N = 350,000, m = 4 is about 4%. While C does not 

affect time complexity directly, it does affect collision probability quadratically, 
commending a choice of small C. We do not attempt to detect these collisions, but 
rely on the incremental any-time nature of the algorithm to correct them over time. 

Space complexity is also linear, since our clustering process needs hold in memory 
only the set of records being clustered. Empirically, we find that 350,000 records is at 
the limit of a single processor, while smaller cohorts are easily processed.  

Convergence Detection 
If steps are small enough, incremental distributed processes like FBC converge rough-
ly exponentially [13]. To monitor convergence, we compare the pairwise separation 
of agents on the torus with their pairwise similarity, similar to Kruskal stress [8] in 
multi-dimensional scaling. If we were able to capture all the similarity information in 
the spatial distribution, the rank ordering of distances between agents in space would 
be the same as their rank ordering in similarity. Sets of two pairs (xi, yi), (xj, yj) of 
joint observations from random variables X, Y define four values: 

• P is the number of such pairs in which the rank ordering of x• and y• is the same.  
• Q is the number of pairs in which the rank ordering is different. 
• T is the number of pairs in which the x values are tied. 
• U is the number of pairs in which the y values are tied. 
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Given these values, the Kendall τ is 

𝜏 =
𝑃 − 𝑄

𝑃 + 𝑄 + 𝑇 ∗ 𝑃 + 𝑄 + 𝑈
 

By construction, τ ranges from -1 if the variables are anti-correlated to +1 if they are 
perfectly correlated. We consider only pairs of points one of whose members is a 
query. Since retrieval in KBC consists of selecting those points that are nearest to the 
query, this measure accurately reflects the aspects of convergence that are important 
to us, ignoring dynamics far from the query that have no impact on retrieval. 

3 Comparison with Other Technologies 

The FBC algorithm merits comparison with a number of other technologies.  

3.1 Semantic Analysis 

A semantic approach to identity matching reasons explicitly about the semantics of 
each field. For example, it might represent the insight that if two people have the 
same address, they probably know one another. Such an approach is standard in clas-
sical artificial intelligence, and can bring a great deal of domain knowledge to bear on 
the problem. However, it is computationally very costly, and thus inappropriate for 
extremely large datasets. It also requires extensive knowledge engineering, slowing 
its application to problems that must be solved quickly. 

FBC uses domain knowledge, in defining similarity metrics for complex attributes. 
The definitions discussed in Section 3.2 all incorporate our intuitions and semantic 
understanding of the problem., FBC translates these intuitions into numbers, permit-
ting much faster computation than symbolic manipulation allows. 

3.2 Cluster Analysis 

Cluster analysis [7] seeks to identify entities that are near to one another by some 
measure. Centralized methods use a distance matrix of pairwise separation of entities, 
and many of them require updating this matrix repeatedly. Their complexity is thus at 
least O(n2), and in practice they reach their limit with datasets on the order of 105 
elements (e.g., 202,000 galaxies in [6]). Decentralized approaches [14] typically parti-
tion the data, cluster each subset separately, then exchange either cluster parameters 
(such as centroids) or representative points to estimate a merged clustering. 

Cluster analysis differs from FBC in three important ways.  

• Constructing and maintaining a distance matrix is difficult with dynamic data. 
Typically, one cannot add data during clustering. FBC is any-time: it can accept 
new data while running (though this project does not draw on this feature).  

• Cluster analysis views entities as fixed in attribute space, and applies distance 
measurement to them as passive objects. FBC allows them to move in an abstract 
low-dimensional space, actively participating in their own organization.  
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• A consequence of the centralized distance matrix is that all attributes participate 
equally in global clustering decisions, hindering the analysis of heterogeneous data. 
FBC allows entities to interact pairwise, drawing only on those attributes that both 
entities possess. Integration across heterogeneous attribute sets happens by transi-
tive interactions, in which an entity shares some attributes with one entity, other 
with another, and thus intermediates their interaction. 

3.3 Dimensionality-Reduction Algorithms 

The movement of FBC entities is reminiscent of some iterative-update algorithms for 
multi-dimensional scaling (MDS), an instance of methods that reduce the dimension-
ality of a set of records. In general, dimensionality-reduction algorithms do not handle 
data that is massive, high-dimensional, dynamic, and heterogeneous. Algorithms for 
dimensionality reduction of distributed sensor data [4,16] rely on the homogeneous or 
near-homogeneous feature spaces of sensory data. Conventional schemes for dimen-
sion reduction, such as the linear FastMap algorithm [3] or nonlinear algorithms such 
as IsoMap [17] or Locally Linear Embedding [15], do not handle diverse or distribut-
ed data. Some of these schemes have been adapted to a distributed environment [1,9-
11], but presume homogeneous data and a non-dynamic environment that allows 
iteration over static data collections on each processor. They commonly make local 
estimates of globally relevant data items globally, and exchange these estimates itera-
tively across the network of processors. In high-dimensional data, not all dimensions 
are relevant to every interaction. Structure among subsets of the data lies on a much 
lower-dimensional manifold, whose dimensions depend on the query. Systems that 
exploit this insight [2,5] require access to all the data in a single process, and so do 
not support the distribution needed for timely processing of massive data. 

4 Evaluation 

We discuss preliminary results from experiments with the data set, using only the 
“Edge” similarity coefficient, and provide an initial assessment of the convergence 
characteristics of the information matching process with a small artificial data set.  

4.1 Results 

The information matching process is inherently parallel and can be distributed wih 
gains essentially linear in the number of processors, e.g., in a MapReduce/Hadoop 
cloud-computing environment. Our experiment used three standard WinTel PCs to 
execute 4 clustering processes each and an additional PC to run the MySQL database 
with the 350k records and their clustering coordinates. In this small setup, we arrived 
at the results reported here in less than two days execution even though one PC (4 
processes) failed due to network problems after less than 8 hours. 

The clustering space is a unit (1x1x1) box with all its 6 faces wrapped. Thus, we 
can operate in a finite volume without having to address edge-effects. The result is a 



Transitive Identity Mapping using Force-Based Clustering  9 

small island of records, 
close to the query records, 
and separated by a distinct 
“moat” from the mass of 
irrelevant records. 

Figure 2 shows the three 
queries (phone, address, 
phone+address) in the upper 
right, and also records that 
have edges in the challenge 
data edge table and either 
set “NY” as their State, 
“Bethesda” as their city, or 
“212” as their area code. 
Adjacent to the queries, a 
“moat” separates a relatively 
small set of relevant neigh-
bors from the rest of the 
data. 

This plot illustrates two 
additional features of FBC. 

1. All of the 7,195 records in this figure are generally relevant to the problem, yet 
FBC locates many of them far from the query, showing its selectivity.  

2. There is considerable 
structure within the “ir-
relevant” records, sug-
gesting that FBC can 
process multiple queries 
at the same time. 

Figure 3 explores our 
“transitivity” claim, plotting 
for all pairs of (record, que-
ry) pairs the explicit edge 
similarity vs. their distance 
in clustering space. The 
gross structure of the ar-
rangement shows many 
records far from the queries 
(all without direct similari-
ty), the empty space in the 
mid-region, and the cluster 
of relevant records near the 
queries. In the fine structure 
of the query neighbors, data 

 
Figure 2: 7.2k Converged Records in Clustering Space 
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records with non-zero direct similarity are ordered in clustering distance according to 
their similarity. Inn confirmation of transitivity, many data records near the query 
records have no direct similarity to those queries, but have been pulled in by the tran-
sitive nature of FBC. 

How well do we solve the initial challenge? In our interface, we select one query 
record, which triggers the collection of a few of the nearest neighbors to the query 
agents in clustering space. We order these by their cluster-space distance and estimate 
their match strength from their normalized (by maximum possible distance in space) 
distance to the selected query record. Selecting any neighbor from that list triggers an 
excursion into the underlying attribute-similarity space. In an exhaustive recursive 
process starting at the query record, we are looking for non-trivial (more than one 
step) transitive paths that lead to the selected data record. A data record with more 
than 92% similarity to the query record based on distance in clustering space and 
ranked #6 among all neighbors of this query, is connected to the query through only 
two intermediate records (note that these records themselves do not have to be close 
to the query in clustering space). We discover this path of records from the (incom-
plete phone number) query to the 6th-nearest neighbor: 

• The unidentified male "Mr. X" lives in New York with his wife, Gloriana D. Bran-
dybuck. Their land-line phone number at 3306 Rosewood Lane, New York, NY 
10003 is consistent with the clinic records. 

• Since they have just married, Gloriana Donnamira Brandybuck’s driver’s license 
or credit card (a Doc-ID) is still registered with her old address at 2719 Pin Oak 
Drive, Manhattan, NY 10018. 

• They traveled to Maryland and checked them into a hotel at 18 Wayback Road, 
Bethesda, MD 20014, using the same Doc-ID. 

• The day after their arrival, Mr. X fell ill and decided to visit the medical clinic 
nearby at 4408 East Madison Ave., Bethesda, MD, 20014. 

The sponsor verified the correctness of our solution. 

4.2 Convergence Assessment 

We claim that FBC can be distributed over many processing units by aggressively 
sub-sampling the number of clustering interactions that have to be computed. We also 
claim that this distributed process has exponential convergence characteristics that 
provide a good answer fast and improved answer if more time is available (any-time 
characteristic). To assess these claims, we performed an initial experiment with an 
artificial data set of 350 color (RGB) data records, groups into seven clusters, and one 
query record. We start the experiment with a random arrangement of the records’ 
agents in cluster space and run to (manually determined) convergence. We repeat the 
experiment varying C, emulating distributed execution with C/351 parallel processes. 
Our sequential execution of the random sampling ignores the possibility for collisions 
(the same record moved by more than one process at the same time), which will in-
troduce additional noise. 
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Figure 4 assesses the im-
pact of parallelization by 
scaling the x-axis for each 
data series by C and correct-
ing for the movement of the 
query record. Thus scaled, 
the convergence curves 
trend very closely to each 
other, suggesting that a 
nearly linear speed-up with 
the number of processors 
may be accomplished in a 
distributed setting. The 
additional noise introduced 
by the sub-sampling with small c actually improves the final quality of the converged 
result. We hypothesize that, similar to simulated annealing processes for instance, the 
noise prevents the clustering from falling into sub-optimal stable states and instead 
drives it closer to the global optimum. 

5 Conclusion 

Many problems in epidemiology and domestic security require the ability to discover 
transitive linkages across heterogeneous databases rapidly, without reasoning explicit-
ly about possible scenarios. Instead of reasoning about the various records, Force-
Based Clustering (FBC) turns each record into a software agent that moves in an 
abstract information space in response to the net “force” it feels from other agents. 
These forces in turn are defined by generic similarity measures over commonly occur-
ring fields, measures that can readily be defined in advance and applied quickly to 
available information. The agent interactions can be distributed over many processors 
to speed the clustering process. Application of this approach to a synthetic data set 
(provided by an anonymous sponsor external to our research group) allows us to iden-
tify the person of interest. Potential extensions include tuning the weights of different 
features, providing for human direction of the processing, distributing data as well as 
processing via Hadoop, and exploring dynamically changing data. 
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