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ABSTRACT 

In most information retrieval systems, software processes 

(whether agent-based or not) reason about passive items of data. 

An alternative approach instantiates each piece of information as 

an agent that actively seeks to organize itself with respect to other 

agents (including queries). In this approach, information objects 

actively self-organize. Imitating the movement of bodies under 

physical forces, we describe a distributed algorithm (“force-based 

clustering,” or FBC) for dynamically clustering and querying 

large, heterogeneous, dynamic collections of entities. The 

algorithm does not simply label entities with cluster names, but 

moves them in a virtual space in a way that estimates the 

transitive closure of the pairwise comparisons. We demonstrate 

the operation of this algorithm on a large, heterogeneous 

collection of records, each representing a person. We have some 

information about a person of interest, but no record in the 

collection directly matches this information. Application of FBC 

identifies a small subset of records that are good candidates for 

describing the person of interest, for further manual investigation 

and verification.  

Categories and Subject Descriptors 

I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence 

– Multiagent Systems 

H.3.3 [Information Storage and Retrieval]: Information Search 

and Retrieval – Information filtering, Retrieval models, Search 

process 

General Terms 

Algorithms. 

Keywords 

Keywords are your own designated keywords. We suggest 

repeating the values on the three classification axes: Description, 

Inspiration, and Focus. 

1. INTRODUCTION 
Many real-world search problems require making use of inexact 

matches against heterogeneous data sources. Consider, for 

example, a person of interest (POI) who is traveling away from 

home. His cell phone died shortly before his departure, and he has 

borrowed a phone from a friend. During his travels, the POI 

leaves the number of the borrowed phone with someone whom he 

wants to contact him, but the number is partially illegible. The 

kind of information we might have includes a directory of cell 

phone numbers with the name and address of the registered user, 

regular telephone white pages with names, addresses, and landline 

phone numbers, airline reservation information with names, 

origin, destination, flight number, and time, and hotel registrations 

including name and credit card number. The names in these 

different sources are not represented in a consistent format, and 

there may be spelling errors. Identifying the POI requires 

computing the transitive closure of numerous relations. Here is 

one, but not by any means the only, route to a solution: the cell 

phone number leads to addresses for people who have some 

connection with the POI. These addresses may indicate the home 

area of the POI. Searching flight records for people who traveled 

from that area to the area where the phone number was left would 

generate a set of candidates for the POI, which might be further 

narrowed by matching against hotel registrations in hotels that are 

particularly near the location where the number was left.  

Constructing and reasoning over such scenarios is combinatorially 

prohibitive, and too slow for emergencies (such as tracking the 

outbreak of an epidemic or disrupting a terrorist attack) where it is 

critical to find the POI quickly. Our subsymbolic approach does 

not require such complex preparation. We instantiate each entity 

as a software agent in an abstract low-dimensional space (a three-

dimensional torus wrapped in four dimensions). The agents 

compute virtual “forces” among themselves, and move in 

response to those forces. The transitivity of these forces brings 

together agents whose similarity may not be documented directly, 

but that are linked by a chain of similar agents. 

Section 2 describes a specific information problem. Section 3 

defines our algorithm. Section 4 relates it to other techniques. 

Section 5 reports its performance on real data. Section 6 discusses 

directions for extension. Section 7 concludes. 

2. PROBLEM STATEMENT 
Imagine the following scenario: 

An unidentified male visited a medical clinic. The individual 

signed in with an illegible signature, and partially illegible 

phone number. Before receiving attention from medical staff, 

the individual exited the facility. While examining other 

patients of the clinic, it was discovered that one of the 

patients showed symptoms of an influenza-like illness 

consistent with a potentially deadly and highly contagious 

virus. Staff initiated quarantine procedures to limit close 

contact until laboratory confirmed diagnosis of influenza was 

completed. In reviewing the sign-in log, staff discovered an 

entry which was unaccounted for. When asked, patients of 

the clinic could not recall any supporting information about 

the unidentified individual. 

For the good both of the mystery patient and of the general public, 

it is essential to identify this person as quickly as possible.  
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An anonymous sponsor provided us with eight databases (DBs), 

containing varying combinations of name, address, phone number, 

and DB-specific record identifiers (Doc-IDs) for fictitious 

individuals, but concealing the identity of the POI. Table 1 

summarizes the six databases. The total number of records is on 

the order of 350,000. 

Cursory examination of the data indicates that some DB-specific 

keys are shared both within and across databases, and some names 

appear to be variant spellings (e.g., “Tom F. Tuk” and “Tolman 

Fredegar Took” share other information). Only the last two digits 

of the phone number are illegible, but 104 records have phone 

numbers that could match the available number, some associated 

with different names or addresses, suggesting errors in the data. 

The phone numbers are all in a different state than the clinic.  

Our task is to develop a prioritized list of people with contact 

information whom authorities should contact in an effort to reach 

the mystery patient as quickly as possible.  

3. TECHNICAL APPROACH 

We first summarize the motivation and intuition for Force-Based 

Clustering (FBC), then describe the implementation. 

3.1 Motivation 

Our approach is motivated by the metaphor of physical forces. 

Interacting physical entities show several characteristics: 

 If they are very close together, they repel one another (the 

physical principle of mutual exclusion). 

 If they are very far apart, their interaction rapidly decreases 

(depending on the physical force involved, as the square or 

even higher powers of the separation). 

 Multiple forces can contribute to interactions (e.g., gravity, 

kinetic linkages, electrostatic force). 

We treat each record in our database as an agent. We distribute 

them in an abstract space, define virtual forces among them, and 

let them move. The intuition is that similar records will move 

closer to one another, pulling their neighbors with them (and thus 

providing transitive closure). We query the system by inserting a 

query record that contains what we know about the POI, letting 

the agents move until the system has converged, and retrieving 

records that end up close to the query. The closer a record is to the 

query, the higher we rank it in our list of persons to contact. 

We emulate the features of physical movement. 

 Extremely close agents repel one another, keeping similar 

records from collapsing to the same location, in spite of 

attractive forces among them.  

 The decrease of interaction strength with distance means that 

most interactions are among nearby agents. This locality of 

interaction facilitates convergence of any digital algorithm 

for computing agent movement. Physical forces act all at 

once, but an algorithm must manipulate a subset of agents at 

each time step. Local interactions reduce the set of agents 

with which a given agent effectively interacts, allowing their 

influence to be felt in fewer steps.  

 The concept of multiple forces lets us handle heterogeneous 

records with varying field contents. In the physical world, 

one force often dominates: we do not worry about 

electrostatic effects among planets, nor about gravitational 

contributions to the relative movement of charged particles. 

In our application, the “last-name force” can be comparable 

in strength to the “address force” or the “phone-number-

force.” Integration of these forces through agent movement 

allows transitive interactions among records that do not 

directly overlap. For example, imagine that record A has 

only address and DB key information (database “CCTR”), B 

has address and name (“CCCR”), and C has name and phone 

number (“TR”). The “address force” will bring A and B 

together, the “name” force will bring B and C together, and 

as a result, A and C come close together, suggesting a link 

between the phone number in C with the DB key in A.  

3.2 Implementation 

We discuss four features of our implementation: similarity 

computation, force definition, distributed execution, and 

convergence detection. 

3.2.1 Similarity Computation 

From the union of the fields in the databases, we define nine 

complex attributes in [0, 1], each derived by its own rules from 

one or more raw attribute fields. These rules take care of missing 

simple attributes (e.g., a full-name complex attribute with no 

middle name) and may also employ external data sources in the 

similarity calculation. The overall similarity between two records 

is a weighted sum of the component similarities. 

The similarity computations and weights we assign to each 

complex attribute reflect our understanding about the contribution 

each one can make to the identity search challenge.  

Edge.—The data set provides not only ~350k records, but also a 

pre-computed set of ~58k similarity-weighted edges based on the 

record attributes. These component (per attribute) and aggregated 

measures form a compressed static similarity assessment as an 

alternative to our other eight remaining complex similarity 

measures below. The “Edge” complex attribute is the total 

composite score of two records as recorded in this table. If the 

Table 1: Databases.—A ‘?’ indicates that the field is present in only some records of the DB. 

DB 
name 

# 
records 

Available Fields 

Last name Middle name Middle initial First name Street # Street City State Zip Phone Doc ID 

CCCR 49183 X X  X X X X X X  X 

CCTR 50001     X X X X X  X 

HPA 49076 X   X  X X X X   

HR 50001     X X X X X X  

ID 49211 X X  X X X X X X  X 

SRLU 130 X  X X X X X X X X  

TR 49207 X  ? X      X X 

WP 49176 X   X X X X X X X  



 

table does not specify an edge between two 

records, then their “Edge” similarity is zero. 

Source.—Though we do not know the 

meaning of the various databases, combining 

information from different databases will be 

critical to transitive closure. Differences in 

record structure may reduce the similarity 

score based on substantive fields. To 

encourage exploration of cross-databases 

similarities, we assign a similarity component 

of 1 between two records if their sources are 

different, and 0 if they are the same.  

Full Name.—A person’s name is the most 

specific and semantically meaningful 

identifier we have. Between two “Full Name” 

attributes we compute the similarity 

accumulative on the presence and match of 

the three component strings (0.5 for last name match, an 

additional 0.3 for first name match, and a final 0.2 for a middle 

name match). While our current implementation determines a 

name component match solely on (ignore-case) string identity, 

future extensions will compute the match using the Soundex 

algorithm [14] on each component of the name, to add robustness 

against spelling errors.  

US State.—The “State” attribute of a record offers a rough 

approximation of the geographic location of this record. We 

define a static similarity measure between all states based on the 

normalized geographic distance of the latitude/longitude 

coordinates of their state capitals. Records with identical state 

identifiers of course have a similarity of 1. Records for states with 

the largest geographic distance of capital cities, or records that do 

not identify a (known) state, all have a similarity value of 0. Other 

similarity values are proportional in-between. 

Zip.—Zip code (the US postal code system) offers a finer 

approximation of the geographic location of this record than the 

US-State attribute. Similarity between two Zip attribute values is 

first established by identity (similarity=1). If the Zip codes are not 

identical but both populated, their similarity is based on the [0, 1] 

normalized geographic distance of the latitude/longitude 

coordinates of their respective geodesic centers. Unpopulated 

records result in a similarity of zero. 

Full Address.—The “Full Address” complex attribute combines 

our various geographic estimates of the location a record 

references. Complete or partial matches of the components of the 

Full Address accumulate similarity contributions. Matches for 

State and Zip entries are provided by their respective complex 

attribute wrappers. City and street name strings are either identical 

or not. If street names are identical, then highly similar house 

numbers provide a small similarity bonus. 

Phone.—The only concrete identifier we have for the POI is a 

phone number, but the database contains some duplicate numbers, 

suggesting either shared phones or erroneous data. We accumulate 

units of similarity by first assessing the similarity of the area 

codes, then the prefix similarity, and finally the line code 

similarity. In this sequence, whenever there is not an identical 

match, further similarity accumulation will stop. For instance, 

there is no reason to compare line codes with different prefixes. If 

the area codes of two records already do not match, we use an 

external database of latitude/longitude coordinates of major cities 

or towns in the geographic coverage of the 

area code to provide a partial area-code 

similarity measure. 

Gender.—The description of the challenge 

problem specifies that the POI is male. While 

there is no explicit “Gender” field in the 

databases, the first name of a person, if 

provided, does provide an estimate of the 

likely gender. We extracted a database of 48k 

international first names that provides an 

estimate of the likely gender. Gender 

attribution in this external database ranges 

takes one of 5 values: Strongly Female, 

Possibly Female, Unknown, Possibly Male, 

Strongly Male. Using string matching with 

the provided First Name attribute value, we 

assign each record one of these five gender 

identities. If no first name is provided, then Unknown is assumed. 

We found substantial coverage of the records in the challenge data 

set by this name database, once we added the gender identifiers of 

the fictional main characters of J.R.R. Tolkin’s Lord of the Rings 

trilogy. We manually defined a 5x5 similarity matrix between the 

gender identities, that assigns a similarity of 1 for matching 

Strongly Female or Male records and decreasing ranges of 

similarity for more distant fields in the gender identity ordering. 

ID-DOC.—We do not know the meaning of the ID-DOC keys, 

but a cursory survey of the data shows that some of these are 

shared, both within and across databases. Binary string similarity 

(0 or 1) is assessed. 

3.2.2 Force Definition 

The force between two agents has two components: one repulsive 

and one attractive. Each force is computed using the distance 

scaling function 

         
  

   
   

    
 

where  

 d is the shortest distance on the torus between the two agents, 

 m is the maximum distance on the torus, 

 s is a shaping factor. 

Figure 1 illustrates the effect of the shaping factor s. When s is 

close to 0, force decreases linearly with distance. As s increases, 

force drops off more rapidly. 

For similarity φ between two agents, the force is 

                                             

Figure 2 shows an example of this force for sr = 5, sa = 6, wa = wr 

= 1, φ = .97, showing repulsion at low separations, reducing force 

at large separations, and attraction in between. The force is 

multiplied by a maximum step length to give the distance that the 

agent moves in the direction of the agent with which it is being 

compared. The larger the step length, the more agents move on 

each iteration, but the more danger there is of thrashing. 

3.2.3 Distributed Execution 

We apply FBC repeatedly to selected pairs of points. Convergence 

is smoothest if step length is modest, which in turn requires each 

 

Figure 1: Effect of Shaping Factor s 

on Force 



 

pair of points to be evaluated repeatedly. 

Application of this algorithm to a large 

number N of points thus involves O(N2) 

operations, which can be prohibitive for very 

large datasets. 

In the experiments reported here, we 

distribute the force computation over multiple 

processes, which all access a centralized DB. 

The processes execute asynchronously. Each 

time a process is invoked, it 

 Retrieves a cohort of c points and their 

current locations from the database (in 

our experiments, c = 35), of which most 

are randomly chosen, but a few 

(“queries”) may be specified; 

 Applies the FBC algorithm to all pairs of points in the 

sample, and computes new locations for them; 

 Writes the points back into the database. 

In addition, a process remembers the k closest agents to a query 

agent that it has seen, so the results of the clustering search can be 

retrieved by merging these lists across all processes. 

FBC scales linearly in both space and time in the number of 

processors, and offers a quadratic benefit over a naïve algorithm, 

regardless of the degree of distribution. Let  

 N = the number of agents; 

 m = the number of processors; 

 c = the number of points clustered by each processor at one 

time; 

 d = the maximum step length an agent can take in a 

processing cycle, expressed as a fraction of the maximum 

distance D on the torus. 

Consider the quadratic benefit first. A naïve approach computes 

the similarity of each agent to all other agents, for complexity 

O(N2). In FBC, an agent is closely attracted to a group of g other 

agents, and each interaction between two agents approximates g2 

interactions, reducing the complexity by a factor of (N/g)2. 

Processing of massive data is limited by both space and time, 

inviting distribution over multiple processors.  

We expect time complexity to scale linearly with the number of 

processors. On average, assume that each agent starts out D/2 

from its optimal location. Then an agent needs O(1/(2d)) 

interactions to reach its destination. For simplicity of analysis, 

assume that processes run synchronously. The probability of an 

agent being selected in a processing cohort is mc/N. Each 

selection yields c interactions, so an agent can anticipate mc2/N 

interactions per processing round, thus requiring N/(2dmc2) 

processing rounds to move to its optimal location. Each round 

takes O(c2) time, so the total processing time is N/(2dm). 

Interestingly, c does not affect time complexity, which scales 

linearly with the number of processors.  

FBC processes run asynchronously, so two processes may 

simultaneously modify the location of the same point, and only 

the last one to write to the database will be preserved. The chance 

of a record being in a given clustering process is c/N. The chance 

that we get some record—any record—in two processes 

concurrently is N*(c/N)2 = c2/N. The number of possible pairs of 

processes is mC2, so the probability of 

collision is mC2 c2/N, which for c = 35, N = 

350,000, m = 4 is about 4%. While c does not 

affect time complexity directly, it does affect 

collision probability, quadratically, 

commending a choice of small c. We do not 

attempt to detect these collisions, but rely on 

the incremental any-time nature of the 

algorithm to correct them over time. 

Space complexity is also linear, since our 

clustering process needs hold in memory only 

the set of records being clustered. 

Empirically, we find that 350,000 records is 

at the limit of a single processor, while 

smaller cohorts are easily processed.  

3.2.4 Convergence Detection 

If steps are small enough, incremental distributed processes like 

FBC converge in a roughly exponential fashion to an asymptote 

[15]. To monitor convergence, we compare the pairwise 

separation of agents in the virtual space of the torus with their 

pairwise similarity. If we were able to capture all the similarity 

information in the spatial distribution, the rank ordering of 

distances between agents in space would be the same as their rank 

ordering in similarity. A natural measure of the correlation of 

these two orderings is the Kendall τ, defined as 

  
   

                
 

The components of this metric assume a set of joint observations 

{(xi, yi)} from two random variables X and Y. Consider two such 

pairs (xi, yi), (xj, yj). They can be related in four different ways, the 

first two of which are mutually exclusive with one another and 

with the latter two. 

 P is the number of such pairs in which the rank ordering of x• 

and y• is the same.  

 Q is the number of pairs in which the rank ordering is wrong: 

if xi < xj, yi > yj, or vice versa. 

 T is the number of pairs in which the x values are tied. 

 U is the number of pairs in which the y values are tied. 

By construction, τ ranges from -1 if the variables are anti-

correlated to +1 if they are perfectly correlated. We monitor the 

convergence of FBC by computing the pairwise separation of 

each pair of points with two metrics: similarity, and physical 

distance on the torus. The comparison of these two metrics is 

widely used to assess the effectiveness of multi-dimensional 

scaling, in the form of the Kruskal stress [10]. We then compute τ 

over this set of pairs of points as our measure of convergence. For 

efficiency, we consider a subset of pairs of points consisting of all 

pairs one of whose members is a query, and thus estimate the 

convergence of the distribution of points with respect to the query. 

Since retrieval in KBC consists of selecting those points that are 

nearest to the query, this measure accurately reflects the aspects of 

convergence that are important to us, ignoring dynamics far from 

the query that have no impact on retrieval. 

 

Figure 2: Example of computed force 

function 



 

4. COMPARISON WITH OTHER 

TECHNOLOGIES 

The FBC algorithm competes with a number of other 

technologies, but also shares some of their features. We briefly 

review three: semantic analysis, cluster analysis, and multi-

dimensional scaling. 

4.1.1 Semantic Analysis 

A semantic approach to identity matching would reason explicitly 

about the semantics of each available field, and seek to relate 

them symbolically. For example, it might represent the insight 

that if two people have the same address, they probably know one 

another. Such an approach is standard in classical artificial 

intelligence, and can bring a great deal of domain knowledge to 

bear on the problem. However, it is computationally very costly, 

and thus inappropriate for extremely large datasets. It also 

requires extensive knowledge engineering, slowing its application 

to problems that must be solved quickly. 

FBC does take advantage of domain knowledge, in defining 

similarity metrics for complex attributes. The definitions 

discussed in Section  3.2.1 all incorporate our intuitions and 

semantic understanding of the problem. However, FBC translates 

these intuitions into numerical terms, permitting much faster 

computation than symbolic manipulation allows. 

4.1.2 Cluster Analysis 

Cluster analysis [3,6,9] seeks to identify entities that are near to 

one another by some measure. Centralized methods begin with a 

distance matrix giving the pairwise separation of entities, and 

many of them require updating this matrix repeatedly. Their 

complexity is thus at least O(n2), and in practice centralized 

implementations reach their limit with datasets on the order of 105 

elements (e.g., 202,000 galaxies in [8]). Decentralized approaches 

[16] typically partition the data, cluster each subset separately, 

then exchange either cluster parameters (such as centroids) or 

representative points to estimate a merged clustering. 

Cluster analysis, like FBC, seeks to discover nearby entities. 

However, it differs in three important ways.  

 The need to construct and maintain a distance matrix means 

that it is difficult to apply to dynamic data. Typically, one 

cannot add data while clustering is going on. FBC is an any-

time algorithm that can accept new data at any time (though 

our application in this project does not draw on this feature).  

 Cluster analysis views entities as fixed in attribute space, and 

applies distance measurement to them as passive objects. 

FBC allows them to move in an abstract low-dimensional 

space, actively participating in their own organization.  

 A consequence of the centralized distance matrix is that all 

attributes participate equally in global clustering decisions, 

hindering the analysis of heterogeneous data. FBC allows 

entities to interact pairwise, drawing only on those attributes 

that both entities possess. Integration across heterogeneous 

attribute sets happens by transitive interactions, in which an 

entity shares some attributes with one entity, other with 

another, and thus intermediates their interaction. 

4.1.3 Dimensionality-Reduction Algorithms 

The movement of FBC entities is reminiscent of some iterative-

update algorithms for multi-dimensional scaling (MDS), an 

example of an important class of methods to reduce the 

dimensionality of a set of records. In general, dimensionality-

reduction algorithms do not handle data that is massive, high-

dimensional, dynamic, and heterogeneous. Algorithms for 

dimensionality reduction of distributed sensor data [5,18] rely on 

the homogeneous or near-homogeneous feature spaces of sensory 

data. Conventional schemes for dimension reduction, such as the 

linear FastMap algorithm [4] or nonlinear algorithms such as 

IsoMap [19] or Locally Linear Embedding [17], do not handle 

diverse or distributed data. Some of these schemes have been 

adapted to a distributed environment [1,11-13], but presume 

homogeneous data and a non-dynamic environment that allows 

iteration over static data collections on each processor. The 

common idea is to estimate locally which data items are relevant 

globally, and exchange these estimates iteratively across the 

network of processors. In high-dimensional data, not all 

dimensions are relevant to every interaction. Structure among 

subsets of the data lies on a much lower-dimensional manifold, 

whose dimensions typically depend on the query. Systems that 

exploit this insight [2,7] require access to all the data in a single 

process, and so do not support the distribution needed for timely 

processing of massive data. 

5. EVALUATION 

In the following, we discuss preliminary results from experiments 

with the data set, using only the “Edge” similarity coefficient, and 

provide an initial assessment of the convergence characteristics of 

the information matching process with a small artificial data set.  

5.1 Results 

The information matching process is inherently parallel and can 

be distributed for essentially linear (with the number of 

processors) performance gains over large scale networks and 

potentially deployed into a MapReduce/Hadoop cloud-computing 

environment. The experiment reported here used three standard 

WinTel PCs to execute 4 clustering processes each and an 

additional PC to run the MySQL database with the 350k records 

and their clustering coordinates. In this small setup, we arrived at 

the results reported here in less than two days execution even 

though one PC (4 processes) failed due to network problems after 

less than 8 hours. 

The clustering space is a unit (1x1x1) box with all its 6 faces 

wrapped. Thus, we can operate in a finite volume without having 

to address edge-effects. The challenge data set is small enough to 

be visualized in its entirety in a centralized user interface. Figure 3 

shows the raw result. It highlights the common location of the 

three query records (phone, address, phone+address) in the upper 

right corner. Adjacent to the queries, the information matching 

process highlights a relatively small set of nearby neighbors (data 

records) as relevant. This small set is clearly separated by a 

“Moat” from the rest of the data. Because the faces of the 

Clustering Space are wrapped, there is a small sphere of relevant 

data records near the queries, then an empty volume, and then a 

larger sphere of irrelevant records filling the remaining volume. 



 

Does the outer volume of “irrelevant” records just contain 

unstructured noise? This question is answered by Figure 4. There, 

we only draw the location of records that are either queries or that 

meet the following constraints: 

 They must have edges in the challenge data edge table 

 They must either set “NY” as their State, “Bethesda” as their 

city, or “212” as their area code. 

7,195 records in the challenge data meet these constraints and, 

given the nature of the challenge, one would consider them 

generally relevant to the identity discovery problem. Inspection of 

the cluster arrangement shows that many of these records are far 

from the query. Thus, the information matching process is highly 

selective. Furthermore, we find that there is clearly structure in the 

outer volume (rather than just uniform distribution), which is 

encouraging when one wants to be able to process more than one 

query at a time. 

Does the experiment substantiate our “transitivity” claim, or does 

the close neighborhood of the query records only contain 

explicitly similar records? In Figure 5, we plot for all pairs of data 

record and query record from Figure 4 the explicit edge similarity 

of the pair over their distance in clustering space. We recognize 

the gross structure of the arrangement, with a large number of 

records far away from the queries (all without direct similarity), 

the empty space in the mid-region, and the cluster of relevant 

records near the queries. In the fine structure of the query 

neighbors, we find that data records with non-zero direct 

similarity are ordered in clustering distance according to their 

similarity with less similar records farther away than more similar 

ones. But, in confirmation of our transitivity claim, we also find a 

significant number of data records near the query records that 

have no direct similarity to those queries. Those have been pulled 

in by the transitive nature of our force-based clustering. 

Finally, to the most important question in the experiment: Do we 

have an answer that can be explained? To answer this question, 

we constructed a rudimentary user interface, connected in real-

time to the database, that supports the exploration of the 

information-matching results. We select one of the query records, 

which triggers the collection of a few of the nearest neighbors to 

the query agents in clustering space. Those are shown in the 

second list, ordered by their cluster-space distance and with a 

retrieval match estimate derived from their normalized (by 

maximum possible distance in space) distance to the selected 

query record. Selecting any neighbor from that list triggers an 

excursion into the underlying attribute-similarity space. In an 

exhaustive recursive process starting at the query record, we are 

 

Figure 3: Converged Location of all 350k Records in 

Clustering Space 

 

Figure 4: Converged Location of 7k Generally Relevant 

and Connected Records in Clustering Space 

  

Figure 5: Correlation Between Clustering Distance (x) and 

Pair-Wise Edge Similarity of Data Records to Query 

Records 
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looking for non-trivial (more than one step) transitive paths that 

lead to the selected data record. Due to the high node degree of 

the underlying similarity graph, the combinatorial explosion of 

this search limits us to consider only paths up to 5 steps. But 

fortunately, a data record with more than 92% similarity to the 

query record based on distance in clustering space and ranked #6 

among all neighbors of this query, is connected to the query 

through only two intermediate records (note that these records 

themselves do not have to be close to the query in clustering 

space). Thus, we present our answer to the challenge problem in 

the form of this (embellished) explanation, following the path of 

records from the (incomplete phone number) query to the 6th-

nearest neighbor: 

 The unidentified male "Mr. X" lives in New York with his 

wife, Gloriana D. Brandybuck. They share a land-line phone 

number consistent with the clinic records at their home at 

3306 Rosewood Lane, New York, NY 10003. 

 Since they have just married, Gloriana Donnamira 

Brandybuck’s driver’s license or credit card (a Doc-ID) is 

still registered with her old address at 2719 Pin Oak Drive, 

Manhattan, NY 10018. 

 They traveled to Maryland and checked them into a hotel at 

18 Wayback Road, Bethesda, MD 20014, using the same 

Doc-ID. 

 The day after their arrival, Mr. X fell ill and decided to visit 

the medical clinic nearby at 4408 East Madison Ave., 

Bethesda, MD, 20014. 

The transitive chain starts with a match on an incomplete phone 

number, which provides a name (and first address), which links us 

to another record with a similar name (and a second address) and 

provides us with a Doc-ID, which leads to an address near the 

medical clinic. After we presented this conclusion, the sponsor 

who provided the data verified that Mr. X is indeed the husband 

of Gloriana Brandybuck. 

5.2 Convergence Assessment 

We claim that FBC can be distributed over many processing units 

by aggressively sub-sampling the number of clustering 

interactions that have to be computed. We also claim that this 

distributed process has exponential convergence characteristics 

that provide a good answer fast and improved answer if more time 

is available (any-time characteristic). To assess these claims, we 

performed an initial experiment with an artificial data set of 350 

color (RGB) data records, groups into seven clusters, and one 

query record. We start the experiment with a random arrangement 

of the records’ agents in cluster space and run to (manually 

determined) convergence (Figure 6). 

We repeat the experiment for varying values of c, which 

determines in these single-processor runs, how many randomly 

selected agents are allowed to interact in each cycle. Thus, we 

emulate a distributed execution, where c/351 corresponds to the 

number of parallel processes we deploy. Our sequential execution 

of the random sampling ignores the possibility for collisions (the 

same record moved by more than one process at the same time), 

which will introduce additional noise. 

Figure 7 plots the evolution of the Kendall Correlation measure 

(Section  3.2.4) – the quality of our clustering of data relative to 

query record(s) – over actual execution cycles for all 8 tested 

values of c. As expected, the clustering requires more cycles 

(moves of sub-sets of size c) with smaller c. But we already 

recognize in the shape of the curves for larger c (>10), that the 

converged state is indeed approximated exponentially. 

Figure 8 assesses the impact of parallelization by scaling the x-

axis for each data series by a factor of c and correcting for the 

movement of the query record. Thus scaled, the convergence 

curves trend very closely to each other, suggesting that a nearly 

linear speed-up with the number of processors may be 

accomplished in a distributed setting.The additional noise 

introduced by the sub-sampling with small c actually improves the 

final quality of the converged result. We hypothesize that, similar 

to simulated annealing processes for instance, the noise prevents 

the clustering from falling into sub-optimal stable states and 

 

Figure 6: Information Matching with 351 Color Records. 

 

Figure 7: Kendall Correlation over Clustering Cycle. 

 

Figure 8: Kendall Correlation over Clustering Cycle * c. 
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instead drives it closer to the global optimum. 

6. POTENTIAL EXTENSIONS 

The current project demonstrates the ability of FBC to find 

transitively related groups of records in a distributed environment 

that can scale to handle massive data. There are numerous 

opportunities for extension. 

Weight assignment.—The weights of similarity components 

critically affect the clustering behavior. We have assigned them 

based on our intuitions about the relative importance of various 

complex attributes, and in fact our initial experiment uses only 

one attribute, based on the edge file. It would be useful to estimate 

them in a more disciplined fashion, based on continuous analysis 

of actual databases against possible identity matching challenges. 

Human interaction.—The system currently simply reports the 

closest k records to a query for further human processing. Ideally, 

humans would interact with the system iteratively as it runs. 

Several modes of interaction are possible: 

 When two records persistently stay very close together, we 

should entertain the hypothesis that they represent the same 

person, and merge them, thus reducing N and speeding up 

processing. A human monitor could review and decide on 

such recommendations. 

 The dynamics of the system may indicate that certain records 

are moving erratically, depending on the other records with 

which they interact. Such differences may arise from 

different sets of attributes that the various groups of records 

hold in common, and might motivate prioritized information 

requests to collect more data on a specific record. 

 A human overseer might change the weights of different 

similarity components (e.g., increase effect of address, 

decrease effect of name), thus exploring different 

dependencies among the components of the problem. 

Data distribution.—The system currently distributes processing, 

but uses a single database. It can be extended to distributed data 

using HADOOP, providing even greater scalability. 

Dynamic data.—The system currently works with a fixed set of 

records. However, the FBC algorithm readily supports the 

introduction of new records as it is running, simply by dropping 

them into a random location on the torus. This capability opens 

the potential to running a continually self-organizing database into 

which new records can quickly be introduced.  

7. CONCLUSION 
Many important applications in epidemiology and domestic 

security require the ability to discover transitive linkages across 

heterogeneous databases rapidly, without reasoning explicitly 

about possible scenarios. Instead of reasoning about the various 

records, Force-Based Clustering (FBC) turns each record into a 

software agent that moves in an abstract information space in 

response to the net “force” it feels from other agents. These forces 

in turn are defined by generic similarity measures over commonly 

occurring fields, measures that can readily be defined in advance 

and applied quickly to available information. The agent 

interactions can be distributed over many processors to speed the 

clustering process. Application of this approach to a synthetic data 

set (provided by an anonymous sponsor external to our research 

group) allows us to identify the person of interest.  
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