
Forthcoming, Proceedings of AAMAS 2013, Minneapolis, MN, 6-10 May 2013

Force-Based Clustering for Transitive Identity Mapping
H. Van Dyke Parunak, Sven A. Brueckner

Soar Technology
3600 Green Court, Suite 600

Ann Arbor, MI 48105
{van.parunak, sven.brueckner}@soartech.com

ABSTRACT

In most information retrieval systems, software processes

(whether agent-based or not) reason about passive items of data.

An alternative approach instantiates each piece of information as

an agent that actively seeks to organize itself with respect to other

agents (including queries). In this approach, information objects

actively self-organize. Imitating the movement of bodies under

physical forces, we describe a distributed algorithm (“force-based

clustering,” or FBC) for dynamically clustering and querying

large, heterogeneous, dynamic collections of entities. The

algorithm does not simply label entities with cluster names, but

moves them in a virtual space in a way that estimates the

transitive closure of the pairwise comparisons. We demonstrate

the operation of this algorithm on a large, heterogeneous

collection of records, each representing a person. We have some

information about a person of interest, but no record in the

collection directly matches this information. Application of FBC

identifies a small subset of records that are good candidates for

describing the person of interest, for further manual investigation

and verification.

Categories and Subject Descriptors

I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence

– Multiagent Systems

H.3.3 [Information Storage and Retrieval]: Information Search

and Retrieval – Information filtering, Retrieval models, Search

process

General Terms

Algorithms.

Keywords

Keywords are your own designated keywords. We suggest

repeating the values on the three classification axes: Description,

Inspiration, and Focus.

1. INTRODUCTION
Many real-world search problems require making use of inexact

matches against heterogeneous data sources. Consider, for

example, a person of interest (POI) who is traveling away from

home. His cell phone died shortly before his departure, and he has

borrowed a phone from a friend. During his travels, the POI

leaves the number of the borrowed phone with someone whom he

wants to contact him, but the number is partially illegible. The

kind of information we might have includes a directory of cell

phone numbers with the name and address of the registered user,

regular telephone white pages with names, addresses, and landline

phone numbers, airline reservation information with names,

origin, destination, flight number, and time, and hotel registrations

including name and credit card number. The names in these

different sources are not represented in a consistent format, and

there may be spelling errors. Identifying the POI requires

computing the transitive closure of numerous relations. Here is

one, but not by any means the only, route to a solution: the cell

phone number leads to addresses for people who have some

connection with the POI. These addresses may indicate the home

area of the POI. Searching flight records for people who traveled

from that area to the area where the phone number was left would

generate a set of candidates for the POI, which might be further

narrowed by matching against hotel registrations in hotels that are

particularly near the location where the number was left.

Constructing and reasoning over such scenarios is combinatorially

prohibitive, and too slow for emergencies (such as tracking the

outbreak of an epidemic or disrupting a terrorist attack) where it is

critical to find the POI quickly. Our subsymbolic approach does

not require such complex preparation. We instantiate each entity

as a software agent in an abstract low-dimensional space (a three-

dimensional torus wrapped in four dimensions). The agents

compute virtual “forces” among themselves, and move in

response to those forces. The transitivity of these forces brings

together agents whose similarity may not be documented directly,

but that are linked by a chain of similar agents.

Section 2 describes a specific information problem. Section 3

defines our algorithm. Section 4 relates it to other techniques.

Section 5 reports its performance on real data. Section 6 discusses

directions for extension. Section 7 concludes.

2. PROBLEM STATEMENT
Imagine the following scenario:

An unidentified male visited a medical clinic. The individual

signed in with an illegible signature, and partially illegible

phone number. Before receiving attention from medical staff,

the individual exited the facility. While examining other

patients of the clinic, it was discovered that one of the

patients showed symptoms of an influenza-like illness

consistent with a potentially deadly and highly contagious

virus. Staff initiated quarantine procedures to limit close

contact until laboratory confirmed diagnosis of influenza was

completed. In reviewing the sign-in log, staff discovered an

entry which was unaccounted for. When asked, patients of

the clinic could not recall any supporting information about

the unidentified individual.

For the good both of the mystery patient and of the general public,

it is essential to identify this person as quickly as possible.

Appears in: Proceedings of the 12th International Conference on

Autonomous Agents and Multiagent Systems (AAMAS 2013), Ito, Jonker,
Gini, and Shehory (eds.), May, 6–10, 2013, Saint Paul, Minnesota, USA.

Copyright © 2013, International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

An anonymous sponsor provided us with eight databases (DBs),

containing varying combinations of name, address, phone number,

and DB-specific record identifiers (Doc-IDs) for fictitious

individuals, but concealing the identity of the POI. Table 1

summarizes the six databases. The total number of records is on

the order of 350,000.

Cursory examination of the data indicates that some DB-specific

keys are shared both within and across databases, and some names

appear to be variant spellings (e.g., “Tom F. Tuk” and “Tolman

Fredegar Took” share other information). Only the last two digits

of the phone number are illegible, but 104 records have phone

numbers that could match the available number, some associated

with different names or addresses, suggesting errors in the data.

The phone numbers are all in a different state than the clinic.

Our task is to develop a prioritized list of people with contact

information whom authorities should contact in an effort to reach

the mystery patient as quickly as possible.

3. TECHNICAL APPROACH

We first summarize the motivation and intuition for Force-Based

Clustering (FBC), then describe the implementation.

3.1 Motivation

Our approach is motivated by the metaphor of physical forces.

Interacting physical entities show several characteristics:

 If they are very close together, they repel one another (the

physical principle of mutual exclusion).

 If they are very far apart, their interaction rapidly decreases

(depending on the physical force involved, as the square or

even higher powers of the separation).

 Multiple forces can contribute to interactions (e.g., gravity,

kinetic linkages, electrostatic force).

We treat each record in our database as an agent. We distribute

them in an abstract space, define virtual forces among them, and

let them move. The intuition is that similar records will move

closer to one another, pulling their neighbors with them (and thus

providing transitive closure). We query the system by inserting a

query record that contains what we know about the POI, letting

the agents move until the system has converged, and retrieving

records that end up close to the query. The closer a record is to the

query, the higher we rank it in our list of persons to contact.

We emulate the features of physical movement.

 Extremely close agents repel one another, keeping similar

records from collapsing to the same location, in spite of

attractive forces among them.

 The decrease of interaction strength with distance means that

most interactions are among nearby agents. This locality of

interaction facilitates convergence of any digital algorithm

for computing agent movement. Physical forces act all at

once, but an algorithm must manipulate a subset of agents at

each time step. Local interactions reduce the set of agents

with which a given agent effectively interacts, allowing their

influence to be felt in fewer steps.

 The concept of multiple forces lets us handle heterogeneous

records with varying field contents. In the physical world,

one force often dominates: we do not worry about

electrostatic effects among planets, nor about gravitational

contributions to the relative movement of charged particles.

In our application, the “last-name force” can be comparable

in strength to the “address force” or the “phone-number-

force.” Integration of these forces through agent movement

allows transitive interactions among records that do not

directly overlap. For example, imagine that record A has

only address and DB key information (database “CCTR”), B

has address and name (“CCCR”), and C has name and phone

number (“TR”). The “address force” will bring A and B

together, the “name” force will bring B and C together, and

as a result, A and C come close together, suggesting a link

between the phone number in C with the DB key in A.

3.2 Implementation

We discuss four features of our implementation: similarity

computation, force definition, distributed execution, and

convergence detection.

3.2.1 Similarity Computation

From the union of the fields in the databases, we define nine

complex attributes in [0, 1], each derived by its own rules from

one or more raw attribute fields. These rules take care of missing

simple attributes (e.g., a full-name complex attribute with no

middle name) and may also employ external data sources in the

similarity calculation. The overall similarity between two records

is a weighted sum of the component similarities.

The similarity computations and weights we assign to each

complex attribute reflect our understanding about the contribution

each one can make to the identity search challenge.

Edge.—The data set provides not only ~350k records, but also a

pre-computed set of ~58k similarity-weighted edges based on the

record attributes. These component (per attribute) and aggregated

measures form a compressed static similarity assessment as an

alternative to our other eight remaining complex similarity

measures below. The “Edge” complex attribute is the total

composite score of two records as recorded in this table. If the

Table 1: Databases.—A ‘?’ indicates that the field is present in only some records of the DB.

DB
name

records

Available Fields

Last name Middle name Middle initial First name Street # Street City State Zip Phone Doc ID

CCCR 49183 X X X X X X X X X

CCTR 50001 X X X X X X

HPA 49076 X X X X X X

HR 50001 X X X X X X

ID 49211 X X X X X X X X X

SRLU 130 X X X X X X X X X

TR 49207 X ? X X X

WP 49176 X X X X X X X X

table does not specify an edge between two

records, then their “Edge” similarity is zero.

Source.—Though we do not know the

meaning of the various databases, combining

information from different databases will be

critical to transitive closure. Differences in

record structure may reduce the similarity

score based on substantive fields. To

encourage exploration of cross-databases

similarities, we assign a similarity component

of 1 between two records if their sources are

different, and 0 if they are the same.

Full Name.—A person’s name is the most

specific and semantically meaningful

identifier we have. Between two “Full Name”

attributes we compute the similarity

accumulative on the presence and match of

the three component strings (0.5 for last name match, an

additional 0.3 for first name match, and a final 0.2 for a middle

name match). While our current implementation determines a

name component match solely on (ignore-case) string identity,

future extensions will compute the match using the Soundex

algorithm [14] on each component of the name, to add robustness

against spelling errors.

US State.—The “State” attribute of a record offers a rough

approximation of the geographic location of this record. We

define a static similarity measure between all states based on the

normalized geographic distance of the latitude/longitude

coordinates of their state capitals. Records with identical state

identifiers of course have a similarity of 1. Records for states with

the largest geographic distance of capital cities, or records that do

not identify a (known) state, all have a similarity value of 0. Other

similarity values are proportional in-between.

Zip.—Zip code (the US postal code system) offers a finer

approximation of the geographic location of this record than the

US-State attribute. Similarity between two Zip attribute values is

first established by identity (similarity=1). If the Zip codes are not

identical but both populated, their similarity is based on the [0, 1]

normalized geographic distance of the latitude/longitude

coordinates of their respective geodesic centers. Unpopulated

records result in a similarity of zero.

Full Address.—The “Full Address” complex attribute combines

our various geographic estimates of the location a record

references. Complete or partial matches of the components of the

Full Address accumulate similarity contributions. Matches for

State and Zip entries are provided by their respective complex

attribute wrappers. City and street name strings are either identical

or not. If street names are identical, then highly similar house

numbers provide a small similarity bonus.

Phone.—The only concrete identifier we have for the POI is a

phone number, but the database contains some duplicate numbers,

suggesting either shared phones or erroneous data. We accumulate

units of similarity by first assessing the similarity of the area

codes, then the prefix similarity, and finally the line code

similarity. In this sequence, whenever there is not an identical

match, further similarity accumulation will stop. For instance,

there is no reason to compare line codes with different prefixes. If

the area codes of two records already do not match, we use an

external database of latitude/longitude coordinates of major cities

or towns in the geographic coverage of the

area code to provide a partial area-code

similarity measure.

Gender.—The description of the challenge

problem specifies that the POI is male. While

there is no explicit “Gender” field in the

databases, the first name of a person, if

provided, does provide an estimate of the

likely gender. We extracted a database of 48k

international first names that provides an

estimate of the likely gender. Gender

attribution in this external database ranges

takes one of 5 values: Strongly Female,

Possibly Female, Unknown, Possibly Male,

Strongly Male. Using string matching with

the provided First Name attribute value, we

assign each record one of these five gender

identities. If no first name is provided, then Unknown is assumed.

We found substantial coverage of the records in the challenge data

set by this name database, once we added the gender identifiers of

the fictional main characters of J.R.R. Tolkin’s Lord of the Rings

trilogy. We manually defined a 5x5 similarity matrix between the

gender identities, that assigns a similarity of 1 for matching

Strongly Female or Male records and decreasing ranges of

similarity for more distant fields in the gender identity ordering.

ID-DOC.—We do not know the meaning of the ID-DOC keys,

but a cursory survey of the data shows that some of these are

shared, both within and across databases. Binary string similarity

(0 or 1) is assessed.

3.2.2 Force Definition

The force between two agents has two components: one repulsive

and one attractive. Each force is computed using the distance

scaling function

where

 d is the shortest distance on the torus between the two agents,

 m is the maximum distance on the torus,

 s is a shaping factor.

Figure 1 illustrates the effect of the shaping factor s. When s is

close to 0, force decreases linearly with distance. As s increases,

force drops off more rapidly.

For similarity φ between two agents, the force is

Figure 2 shows an example of this force for sr = 5, sa = 6, wa = wr

= 1, φ = .97, showing repulsion at low separations, reducing force

at large separations, and attraction in between. The force is

multiplied by a maximum step length to give the distance that the

agent moves in the direction of the agent with which it is being

compared. The larger the step length, the more agents move on

each iteration, but the more danger there is of thrashing.

3.2.3 Distributed Execution

We apply FBC repeatedly to selected pairs of points. Convergence

is smoothest if step length is modest, which in turn requires each

Figure 1: Effect of Shaping Factor s

on Force

pair of points to be evaluated repeatedly.

Application of this algorithm to a large

number N of points thus involves O(N2)

operations, which can be prohibitive for very

large datasets.

In the experiments reported here, we

distribute the force computation over multiple

processes, which all access a centralized DB.

The processes execute asynchronously. Each

time a process is invoked, it

 Retrieves a cohort of c points and their

current locations from the database (in

our experiments, c = 35), of which most

are randomly chosen, but a few

(“queries”) may be specified;

 Applies the FBC algorithm to all pairs of points in the

sample, and computes new locations for them;

 Writes the points back into the database.

In addition, a process remembers the k closest agents to a query

agent that it has seen, so the results of the clustering search can be

retrieved by merging these lists across all processes.

FBC scales linearly in both space and time in the number of

processors, and offers a quadratic benefit over a naïve algorithm,

regardless of the degree of distribution. Let

 N = the number of agents;

 m = the number of processors;

 c = the number of points clustered by each processor at one

time;

 d = the maximum step length an agent can take in a

processing cycle, expressed as a fraction of the maximum

distance D on the torus.

Consider the quadratic benefit first. A naïve approach computes

the similarity of each agent to all other agents, for complexity

O(N2). In FBC, an agent is closely attracted to a group of g other

agents, and each interaction between two agents approximates g2

interactions, reducing the complexity by a factor of (N/g)2.

Processing of massive data is limited by both space and time,

inviting distribution over multiple processors.

We expect time complexity to scale linearly with the number of

processors. On average, assume that each agent starts out D/2

from its optimal location. Then an agent needs O(1/(2d))

interactions to reach its destination. For simplicity of analysis,

assume that processes run synchronously. The probability of an

agent being selected in a processing cohort is mc/N. Each

selection yields c interactions, so an agent can anticipate mc2/N

interactions per processing round, thus requiring N/(2dmc2)

processing rounds to move to its optimal location. Each round

takes O(c2) time, so the total processing time is N/(2dm).

Interestingly, c does not affect time complexity, which scales

linearly with the number of processors.

FBC processes run asynchronously, so two processes may

simultaneously modify the location of the same point, and only

the last one to write to the database will be preserved. The chance

of a record being in a given clustering process is c/N. The chance

that we get some record—any record—in two processes

concurrently is N*(c/N)2 = c2/N. The number of possible pairs of

processes is mC2, so the probability of

collision is mC2 c2/N, which for c = 35, N =

350,000, m = 4 is about 4%. While c does not

affect time complexity directly, it does affect

collision probability, quadratically,

commending a choice of small c. We do not

attempt to detect these collisions, but rely on

the incremental any-time nature of the

algorithm to correct them over time.

Space complexity is also linear, since our

clustering process needs hold in memory only

the set of records being clustered.

Empirically, we find that 350,000 records is

at the limit of a single processor, while

smaller cohorts are easily processed.

3.2.4 Convergence Detection

If steps are small enough, incremental distributed processes like

FBC converge in a roughly exponential fashion to an asymptote

[15]. To monitor convergence, we compare the pairwise

separation of agents in the virtual space of the torus with their

pairwise similarity. If we were able to capture all the similarity

information in the spatial distribution, the rank ordering of

distances between agents in space would be the same as their rank

ordering in similarity. A natural measure of the correlation of

these two orderings is the Kendall τ, defined as

The components of this metric assume a set of joint observations

{(xi, yi)} from two random variables X and Y. Consider two such

pairs (xi, yi), (xj, yj). They can be related in four different ways, the

first two of which are mutually exclusive with one another and

with the latter two.

 P is the number of such pairs in which the rank ordering of x•

and y• is the same.

 Q is the number of pairs in which the rank ordering is wrong:

if xi < xj, yi > yj, or vice versa.

 T is the number of pairs in which the x values are tied.

 U is the number of pairs in which the y values are tied.

By construction, τ ranges from -1 if the variables are anti-

correlated to +1 if they are perfectly correlated. We monitor the

convergence of FBC by computing the pairwise separation of

each pair of points with two metrics: similarity, and physical

distance on the torus. The comparison of these two metrics is

widely used to assess the effectiveness of multi-dimensional

scaling, in the form of the Kruskal stress [10]. We then compute τ

over this set of pairs of points as our measure of convergence. For

efficiency, we consider a subset of pairs of points consisting of all

pairs one of whose members is a query, and thus estimate the

convergence of the distribution of points with respect to the query.

Since retrieval in KBC consists of selecting those points that are

nearest to the query, this measure accurately reflects the aspects of

convergence that are important to us, ignoring dynamics far from

the query that have no impact on retrieval.

Figure 2: Example of computed force

function

4. COMPARISON WITH OTHER

TECHNOLOGIES

The FBC algorithm competes with a number of other

technologies, but also shares some of their features. We briefly

review three: semantic analysis, cluster analysis, and multi-

dimensional scaling.

4.1.1 Semantic Analysis

A semantic approach to identity matching would reason explicitly

about the semantics of each available field, and seek to relate

them symbolically. For example, it might represent the insight

that if two people have the same address, they probably know one

another. Such an approach is standard in classical artificial

intelligence, and can bring a great deal of domain knowledge to

bear on the problem. However, it is computationally very costly,

and thus inappropriate for extremely large datasets. It also

requires extensive knowledge engineering, slowing its application

to problems that must be solved quickly.

FBC does take advantage of domain knowledge, in defining

similarity metrics for complex attributes. The definitions

discussed in Section 3.2.1 all incorporate our intuitions and

semantic understanding of the problem. However, FBC translates

these intuitions into numerical terms, permitting much faster

computation than symbolic manipulation allows.

4.1.2 Cluster Analysis

Cluster analysis [3,6,9] seeks to identify entities that are near to

one another by some measure. Centralized methods begin with a

distance matrix giving the pairwise separation of entities, and

many of them require updating this matrix repeatedly. Their

complexity is thus at least O(n2), and in practice centralized

implementations reach their limit with datasets on the order of 105

elements (e.g., 202,000 galaxies in [8]). Decentralized approaches

[16] typically partition the data, cluster each subset separately,

then exchange either cluster parameters (such as centroids) or

representative points to estimate a merged clustering.

Cluster analysis, like FBC, seeks to discover nearby entities.

However, it differs in three important ways.

 The need to construct and maintain a distance matrix means

that it is difficult to apply to dynamic data. Typically, one

cannot add data while clustering is going on. FBC is an any-

time algorithm that can accept new data at any time (though

our application in this project does not draw on this feature).

 Cluster analysis views entities as fixed in attribute space, and

applies distance measurement to them as passive objects.

FBC allows them to move in an abstract low-dimensional

space, actively participating in their own organization.

 A consequence of the centralized distance matrix is that all

attributes participate equally in global clustering decisions,

hindering the analysis of heterogeneous data. FBC allows

entities to interact pairwise, drawing only on those attributes

that both entities possess. Integration across heterogeneous

attribute sets happens by transitive interactions, in which an

entity shares some attributes with one entity, other with

another, and thus intermediates their interaction.

4.1.3 Dimensionality-Reduction Algorithms

The movement of FBC entities is reminiscent of some iterative-

update algorithms for multi-dimensional scaling (MDS), an

example of an important class of methods to reduce the

dimensionality of a set of records. In general, dimensionality-

reduction algorithms do not handle data that is massive, high-

dimensional, dynamic, and heterogeneous. Algorithms for

dimensionality reduction of distributed sensor data [5,18] rely on

the homogeneous or near-homogeneous feature spaces of sensory

data. Conventional schemes for dimension reduction, such as the

linear FastMap algorithm [4] or nonlinear algorithms such as

IsoMap [19] or Locally Linear Embedding [17], do not handle

diverse or distributed data. Some of these schemes have been

adapted to a distributed environment [1,11-13], but presume

homogeneous data and a non-dynamic environment that allows

iteration over static data collections on each processor. The

common idea is to estimate locally which data items are relevant

globally, and exchange these estimates iteratively across the

network of processors. In high-dimensional data, not all

dimensions are relevant to every interaction. Structure among

subsets of the data lies on a much lower-dimensional manifold,

whose dimensions typically depend on the query. Systems that

exploit this insight [2,7] require access to all the data in a single

process, and so do not support the distribution needed for timely

processing of massive data.

5. EVALUATION

In the following, we discuss preliminary results from experiments

with the data set, using only the “Edge” similarity coefficient, and

provide an initial assessment of the convergence characteristics of

the information matching process with a small artificial data set.

5.1 Results

The information matching process is inherently parallel and can

be distributed for essentially linear (with the number of

processors) performance gains over large scale networks and

potentially deployed into a MapReduce/Hadoop cloud-computing

environment. The experiment reported here used three standard

WinTel PCs to execute 4 clustering processes each and an

additional PC to run the MySQL database with the 350k records

and their clustering coordinates. In this small setup, we arrived at

the results reported here in less than two days execution even

though one PC (4 processes) failed due to network problems after

less than 8 hours.

The clustering space is a unit (1x1x1) box with all its 6 faces

wrapped. Thus, we can operate in a finite volume without having

to address edge-effects. The challenge data set is small enough to

be visualized in its entirety in a centralized user interface. Figure 3

shows the raw result. It highlights the common location of the

three query records (phone, address, phone+address) in the upper

right corner. Adjacent to the queries, the information matching

process highlights a relatively small set of nearby neighbors (data

records) as relevant. This small set is clearly separated by a

“Moat” from the rest of the data. Because the faces of the

Clustering Space are wrapped, there is a small sphere of relevant

data records near the queries, then an empty volume, and then a

larger sphere of irrelevant records filling the remaining volume.

Does the outer volume of “irrelevant” records just contain

unstructured noise? This question is answered by Figure 4. There,

we only draw the location of records that are either queries or that

meet the following constraints:

 They must have edges in the challenge data edge table

 They must either set “NY” as their State, “Bethesda” as their

city, or “212” as their area code.

7,195 records in the challenge data meet these constraints and,

given the nature of the challenge, one would consider them

generally relevant to the identity discovery problem. Inspection of

the cluster arrangement shows that many of these records are far

from the query. Thus, the information matching process is highly

selective. Furthermore, we find that there is clearly structure in the

outer volume (rather than just uniform distribution), which is

encouraging when one wants to be able to process more than one

query at a time.

Does the experiment substantiate our “transitivity” claim, or does

the close neighborhood of the query records only contain

explicitly similar records? In Figure 5, we plot for all pairs of data

record and query record from Figure 4 the explicit edge similarity

of the pair over their distance in clustering space. We recognize

the gross structure of the arrangement, with a large number of

records far away from the queries (all without direct similarity),

the empty space in the mid-region, and the cluster of relevant

records near the queries. In the fine structure of the query

neighbors, we find that data records with non-zero direct

similarity are ordered in clustering distance according to their

similarity with less similar records farther away than more similar

ones. But, in confirmation of our transitivity claim, we also find a

significant number of data records near the query records that

have no direct similarity to those queries. Those have been pulled

in by the transitive nature of our force-based clustering.

Finally, to the most important question in the experiment: Do we

have an answer that can be explained? To answer this question,

we constructed a rudimentary user interface, connected in real-

time to the database, that supports the exploration of the

information-matching results. We select one of the query records,

which triggers the collection of a few of the nearest neighbors to

the query agents in clustering space. Those are shown in the

second list, ordered by their cluster-space distance and with a

retrieval match estimate derived from their normalized (by

maximum possible distance in space) distance to the selected

query record. Selecting any neighbor from that list triggers an

excursion into the underlying attribute-similarity space. In an

exhaustive recursive process starting at the query record, we are

Figure 3: Converged Location of all 350k Records in

Clustering Space

Figure 4: Converged Location of 7k Generally Relevant

and Connected Records in Clustering Space

Figure 5: Correlation Between Clustering Distance (x) and

Pair-Wise Edge Similarity of Data Records to Query

Records

Query
Records

Cluster of Near
Neighbors

Clear Separation
“The Moat”

Far (Irrelevant)
Records

Many “Far” Records
are generally

related to the query!

Cluster of Near
Neighbors

Clear Separation
“The Moat”

Far (Irrelevant)
Records

Records Relevant
through close

Transitive Similarity!

Distance to Query in Clustering Space

P
ro

xi
m

it
y

to
 Q

u
er

y
in

 A
tt

ri
b

u
te

 S
p

a
ce

 (
E

d
ge

 S
im

ila
ri

ty
)

looking for non-trivial (more than one step) transitive paths that

lead to the selected data record. Due to the high node degree of

the underlying similarity graph, the combinatorial explosion of

this search limits us to consider only paths up to 5 steps. But

fortunately, a data record with more than 92% similarity to the

query record based on distance in clustering space and ranked #6

among all neighbors of this query, is connected to the query

through only two intermediate records (note that these records

themselves do not have to be close to the query in clustering

space). Thus, we present our answer to the challenge problem in

the form of this (embellished) explanation, following the path of

records from the (incomplete phone number) query to the 6th-

nearest neighbor:

 The unidentified male "Mr. X" lives in New York with his

wife, Gloriana D. Brandybuck. They share a land-line phone

number consistent with the clinic records at their home at

3306 Rosewood Lane, New York, NY 10003.

 Since they have just married, Gloriana Donnamira

Brandybuck’s driver’s license or credit card (a Doc-ID) is

still registered with her old address at 2719 Pin Oak Drive,

Manhattan, NY 10018.

 They traveled to Maryland and checked them into a hotel at

18 Wayback Road, Bethesda, MD 20014, using the same

Doc-ID.

 The day after their arrival, Mr. X fell ill and decided to visit

the medical clinic nearby at 4408 East Madison Ave.,

Bethesda, MD, 20014.

The transitive chain starts with a match on an incomplete phone

number, which provides a name (and first address), which links us

to another record with a similar name (and a second address) and

provides us with a Doc-ID, which leads to an address near the

medical clinic. After we presented this conclusion, the sponsor

who provided the data verified that Mr. X is indeed the husband

of Gloriana Brandybuck.

5.2 Convergence Assessment

We claim that FBC can be distributed over many processing units

by aggressively sub-sampling the number of clustering

interactions that have to be computed. We also claim that this

distributed process has exponential convergence characteristics

that provide a good answer fast and improved answer if more time

is available (any-time characteristic). To assess these claims, we

performed an initial experiment with an artificial data set of 350

color (RGB) data records, groups into seven clusters, and one

query record. We start the experiment with a random arrangement

of the records’ agents in cluster space and run to (manually

determined) convergence (Figure 6).

We repeat the experiment for varying values of c, which

determines in these single-processor runs, how many randomly

selected agents are allowed to interact in each cycle. Thus, we

emulate a distributed execution, where c/351 corresponds to the

number of parallel processes we deploy. Our sequential execution

of the random sampling ignores the possibility for collisions (the

same record moved by more than one process at the same time),

which will introduce additional noise.

Figure 7 plots the evolution of the Kendall Correlation measure

(Section 3.2.4) – the quality of our clustering of data relative to

query record(s) – over actual execution cycles for all 8 tested

values of c. As expected, the clustering requires more cycles

(moves of sub-sets of size c) with smaller c. But we already

recognize in the shape of the curves for larger c (>10), that the

converged state is indeed approximated exponentially.

Figure 8 assesses the impact of parallelization by scaling the x-

axis for each data series by a factor of c and correcting for the

movement of the query record. Thus scaled, the convergence

curves trend very closely to each other, suggesting that a nearly

linear speed-up with the number of processors may be

accomplished in a distributed setting.The additional noise

introduced by the sub-sampling with small c actually improves the

final quality of the converged result. We hypothesize that, similar

to simulated annealing processes for instance, the noise prevents

the clustering from falling into sub-optimal stable states and

Figure 6: Information Matching with 351 Color Records.

Figure 7: Kendall Correlation over Clustering Cycle.

Figure 8: Kendall Correlation over Clustering Cycle * c.

Random Limit

0 500 1000 1500 2000 2500

0.0

0.2

0.4

0.6

0.8

ClusteringCycle

K
en

d
al

l
C

o
rr

el
at

io
n

C 351
C 200
C 100
C 50
C 20
C 10
C 5
C 2

Random Limit0.0

0.2

0.4

0.6

0.8

ClusteringCycle C 1 C N since the query always moves

K
en

d
al

l
C

o
rr

el
at

io
n

C 351
C 200
C 100
C 50
C 20
C 10
C 5
C 2

instead drives it closer to the global optimum.

6. POTENTIAL EXTENSIONS

The current project demonstrates the ability of FBC to find

transitively related groups of records in a distributed environment

that can scale to handle massive data. There are numerous

opportunities for extension.

Weight assignment.—The weights of similarity components

critically affect the clustering behavior. We have assigned them

based on our intuitions about the relative importance of various

complex attributes, and in fact our initial experiment uses only

one attribute, based on the edge file. It would be useful to estimate

them in a more disciplined fashion, based on continuous analysis

of actual databases against possible identity matching challenges.

Human interaction.—The system currently simply reports the

closest k records to a query for further human processing. Ideally,

humans would interact with the system iteratively as it runs.

Several modes of interaction are possible:

 When two records persistently stay very close together, we

should entertain the hypothesis that they represent the same

person, and merge them, thus reducing N and speeding up

processing. A human monitor could review and decide on

such recommendations.

 The dynamics of the system may indicate that certain records

are moving erratically, depending on the other records with

which they interact. Such differences may arise from

different sets of attributes that the various groups of records

hold in common, and might motivate prioritized information

requests to collect more data on a specific record.

 A human overseer might change the weights of different

similarity components (e.g., increase effect of address,

decrease effect of name), thus exploring different

dependencies among the components of the problem.

Data distribution.—The system currently distributes processing,

but uses a single database. It can be extended to distributed data

using HADOOP, providing even greater scalability.

Dynamic data.—The system currently works with a fixed set of

records. However, the FBC algorithm readily supports the

introduction of new records as it is running, simply by dropping

them into a random location on the torus. This capability opens

the potential to running a continually self-organizing database into

which new records can quickly be introduced.

7. CONCLUSION
Many important applications in epidemiology and domestic

security require the ability to discover transitive linkages across

heterogeneous databases rapidly, without reasoning explicitly

about possible scenarios. Instead of reasoning about the various

records, Force-Based Clustering (FBC) turns each record into a

software agent that moves in an abstract information space in

response to the net “force” it feels from other agents. These forces

in turn are defined by generic similarity measures over commonly

occurring fields, measures that can readily be defined in advance

and applied quickly to available information. The agent

interactions can be distributed over many processors to speed the

clustering process. Application of this approach to a synthetic data

set (provided by an anonymous sponsor external to our research

group) allows us to identify the person of interest.

8. REFERENCES

[1]F.N. Abu-Khzam, N. Samatovaz, et al. Distributed Dimension

Reduction Algorithms for Widely Dispersed Data. In Proc.

the Fourteenth IASTED International Conference on Parallel

and Distributed Computing and Systems (IASTED PDCS

2002), pages 167-174, ACTA Press, 2002.

[2]C.C. Aggarwal, P.S. Yu. Finding Generalized Projected

Clusters In High Dimensional Spaces. In Proc. SIGMOD

Conference, pages 70-81, 2000.

[3]P. Arabie, L.J. Hubert, et al. Clustering and Classification.

Singapore, World Scientific, 1996.

[4]C. Faloutsos, K.-I.D. Lin. FastMap: A Fast Algorithm for

Indexing, Data-Mining and Visualization of Traditional and

Multimedia Datasets. In Proc. ACM SIGMOD, pages 163-

174, 1995.

[5]J. Fang, H. Li. Optimal/Near-Optimal Dimensionality

Reduction for Distributed Estimation in Homogeneous and

Certain Inhomogeneous Scenarios. IEEE Transactions on

Signal Processing, 58(8):4339-4353, 2010.

[6]J. Hartigan. Clustering Algorithms. New York, NY, John

Wiley and Sons, 1975.

[7]A. Hinneburg, C. Aggarwal, et al. What is the nearest neighbor

in high dimensional spaces? In Proc. 26th Int. Conf. on Very

Large Data Bases (VLDB 2000), pages 506-515, Morgan

Kaufmann, 2000.

[8]W. Jang, M. Hendry. Cluster analysis of massive datasets in

astronomy. Statistics and Computing, 17(3):253-262, 2007.

[9]L. Kaufman, P.J. Rousseeuw. Finding Groups in Data: An

Introduction to Cluster Analysis. New York, John Wiley &

Sons, 1990.

[10]J.B. Kruskal. Multidimensional scaling by optimizing

goodness of fit to a nonmetric hypothesis. Psychometrika,

29:1-27, 1964.

[11]P. Magdalinos, C. Doulkeridis, et al. K-Landmarks:

Distributed Dimensionality Reduction for Clustering Quality

Maintenance. In Proc. 10th European Conference on

Principles and Practice of Knowledge Discovery in

Databases (PKDD'06), 2006.

[12]P. Magdalinos, C. Doulkeridis, et al. A Novel Effective

Distributed Dimensionality Reduction Algorithm In Proc.

SIAM Feature Selection for Data Mining Workshop (SIAM-

FSDM'06), 2006.

[13]P. Magdalinos, M. Vazirgiannis, et al. Distributed Knowledge

Discovery with Non Linear Dimensionality Reduction. In

Proc. the 14th Pacific-Asia Conference on Knowledge

Discovery and Data Mining (PAKDD'10), 2010.

[14]NARA. The Soundex Indexing System. National Archives

and Records Administration, 2007.

http://www.archives.gov/research/census/soundex.html.

[15]H.V.D. Parunak, S.A. Brueckner, et al. Global Convergence

of Local Agent Behaviors. In Proc. Fourth International

Joint Conference on Autonomous Agents and Multi-Agent

Systems (AAMAS05), pages 305-312, ACM, 2005.

[16]A. Rajaraman, J.D. Ullman. Mining of Massive Datasets.

Cambridge, UK, Cambridge University Press, 2011.

http://www.archives.gov/research/census/soundex.html

[17]S. Roweis, L. Saul. Nonlinear dimensionality reduction by

locally linear embedding. Science 290(5500):2323--2326,

2000.

[18]O. Roy, M. Vetterli. Dimensionality Reduction for

Distributed Estimation in the Infinite Dimensional Regime.

IEEE Trans. Information Theory, 54(4):1655-1669, 2008

[19]J.B. Tenenbaum, V.d. Silva, et al. A Global Geometric

Framework for Nonlinear Dimensionality Reduction.

Science, 290(December 22):2319-2323, 2000.

