
Analyzing Stigmergic Learning for Self-Organizing
Mobile Ad-Hoc Networks (MANET’s)

H. Van Dyke Parunak, Sven A. Brueckner

Altarum Institute
3520 Green Court, Ann Arbor, MI 48105, USA

{sven.brueckner, van.parunak}@altarum.org

Abstract. In recent years, mobile ad-hoc networks (MANET’s) have been de-
ployed in various scenarios, but their scalability is severely restricted by the
human operators’ ability to configure and manage the network in the face of
rapid change of the network structure and demand patterns. In this paper, we
present a self-organizing approach to MANET management based on stigmer-
gic agents and demonstrate how to analyze its performance under different de-
ployment assumptions. Our results emphasize the importance of attention to no-
tions from dynamical systems theory in designing and deploying multi-agent
systems.

1. Introduction

The challenges of managing mobile ad-hoc networks (MANET’s) [1] may overwhelm
traditional network management approaches. Such networks are highly dynamic, se-
verely constrained in their processing and communications resources, distributed and
decentralized. Thus, centralized management approaches requiring accurate and de-
tailed knowledge about the state of the overall system may fail, while decentralized
and distributed strategies become competitive.

We have successfully applied fine-grained agent architecture modeled on algo-
rithms used in biological systems [11] to a range of real-world problems, including
manufacturing control [2], pattern recognition in sensor networks [4], collaboration
and task assignment among multiple mobile platforms [13], path planning for un-
manned vehicles [16], and information retrieval in massive data [17]. This paper ex-
plores the applicability of these mechanisms to another domain, mobile ad-hoc com-
munication networks (MANET’s). Like other domains in which swarming is
effective, MANET’s are distributed, decentralized, and dynamic. Self-organizing sys-
tems of agents with emergent system-level functions offer an approach that is robust,
flexible, adaptive and scalable. By applying our techniques to a new domain, we gain
experience with their capabilities and restrictions, and further exercise the develop-
ment methodology that we are developing for such systems [12, 15].

Section 2 presents a concrete management problem in the MANET domain. Sec-
tion 3 offers a solution based on fine-grained agents dynamically interacting in the
network environment. Section 4 offers experimental evidence for the effectiveness of
our solution. Section 5 concludes.

Proceedings of ESOA04 (Engineering Self-Organising Agents, at AAMAS 04, New York, NY), Springer, 2005. http://www.springeronline.com/lncs, © Springer-Verlag.

2. The MANET Server
Management Problem

Figure 1 offers an overview of the
MANET domain. Assume a network
of (randomly) moving nodes that may
communicate within a limited range,
and may fail temporarily. A canonical
example of an application for a
MANET is a fleet of vehicles (say,
trucks or dismounted troops in a mili-
tary operation, or rovers exploring a
remote planet) equipped with line-of-
sight radios.
We focus our attention on configura-
tions in which nodes may host distinct
client and server processes. Every
node carries a client and some nodes
carry a server process. Examples of
services that might be restricted to
some vehicles include
• long-range communications links

back to a remote commander;
• wide-range sensors that can pro-

vide an integrating context for more local sensors carried on most vehicles;
• target recognition databases and data fusion capabilities that can provide interpre-

tive support for platforms with more local access.
A server provides a stateless and instantaneous service to a client upon request if

there exists a communications path between the client and the server and if the server
node is currently active. Servers in our model have no capacity constraints, and may
serve as many clients at the same time as requests arrive.

Because the nodes are mobile, weight and space are constrained, limiting the
power available for communications and processing. Some of the likely services
(long-range communications or sensing) impose especially high power demands on
the servers, making it desirable to operate them only when they are needed to support
the demands from the rest of the fleet. Vehicle movement must satisfy two con-
straints: achieving mission objectives and maintaining communication connectivity.
In the simple example we describe here, all vehicles share both objectives, but tech-
niques that we have demonstrated elsewhere [13] permit vehicles to specialize for dif-
ferent tasks, so that some vehicles would dedicate themselves to serving as communi-
cation relays, reducing the constraints on the other vehicles imposed by the need to
maintain connectivity.

The server management problem requires answering three questions: given the cur-
rent topology of the network determined by node locations, communications ranges
and node availability, decide

Motion Box “up” node“down” node

1 client
0 server 1 client

1 serversub-network

Fig. 1. Domain Overview

1. which server nodes should actually
expend battery power to execute the
server process;

2. to which server node a particular cli-
ent should send its next service re-
quest; and

3. where to relocate server nodes to
meet the current demand by the cli-
ents.
Thus, the network must be provided

with mechanisms that self-diagnose the
current network state (e.g., breaking of
connections, availability of new con-
nections, failure of nodes) and provide
the information in a way that enables it
to self-configure the ongoing processes
appropriately. These functions could be
satisfied if all servers executed con-
stantly and if all clients had global
knowledge of the overall system (Fig-
ure 2), but such a solution is impracti-
cal.

3. Emergent MANET Management

A fine-grained, self-organizing agent system can solve the service location problem
specified in Section 2. Our solution starts with the following initial conditions:
• Server processes shut down immediately if no requests arrive.
• A client does not know about the location of servers in the network, unless the cli-

ent is co-located with a server on the same node.
• Server nodes move randomly (a zeroth order approximation to mission-motivated

movement)..
Thus, in terms of our design goals, we preserve maximum battery power, but most

clients’ service needs are not met since they don’t know which server to address.
We now define a co-evolutionary learning process based on individual reinforce-

ment. This learning process has three components.
1. The server population learns to maintain an appropriate number of active server

processes,
2. and to adjust the position of these processes as they learn about the clients who are

using them.
3. The client population learns to direct requests to active servers.

service “need”
not met

service “need” met server
used

active
server

x

x x x
x

x

service “need”
not met

service “need” met server
used

active
server

x

x x x
x

x

Fig. 2. Global Solution

3.1 Server Activation Learning

Any server node is aware of the incoming requests from one or more clients. If the
server process is running, then these requests are served, otherwise they fail, but the
node will immediately start up the server process to be available for any new requests
in the next cycle. While the server process is running, it tracks the number of incom-
ing requests. If there are no requests, it will begin a countdown. It will either abort the
countdown if new requests arrive (and are served), or shut down if it reaches the end
of the countdown.

Initially, the duration of the countdown is zero. Thus, server processes are shut
down as soon as no new requests come in. We define the following simple reinforce-
ment learning process to adjust the duration of the next countdown:

(+) If a request from a client arrives and the server process is down, we increase
the length of the countdown period for subsequent countdowns, since apparently the
server should have been up and we lost performance (failed to serve a request) while
the server was down.

(–) If no request arrives while the countdown proceeds and the server process
reaches the end of the countdown, then we decrease the length of the countdown pe-
riod for subsequent countdowns, since apparently the server could have been down al-
ready and we wasted resources (battery power) while the server was up.

Driven by the demand pattern as it is perceived at the particular server node, the
server process learns to maintain the optimal availability. In effect, the server learns
the mean time between requests and adjusts its countdown length accordingly to stay
up long enough. With this learning mechanism in place, the client population will
now assume the role of the teacher as it generates a demand signal that leads some
servers to stay down (extremely short countdown) while others stay consistently up
(extremely long countdowns).

3.2 Client Preference Learning

Initially, only clients that are co-located with a server on the same node have any in-
formation about possible server addresses. These clients will become the source of
knowledge of the client population as they share this information with their neighbors.

Knowledge Representation.—Clients manage their knowledge about and evalua-
tion of specific servers in a dynamic set of scorecards, one for each server they know.
A scorecard carries the address of the server, a score in favor (pro) and a score against
(con) using this server. The current score of a server is computed as pro - con.

Decision Process.—When a client needs to select a server, it normalizes the cur-
rent scores of all scorecards so that they add up to one and selects a server with a
probability equal to the normalized score (roulette wheel selection). Thus, servers
with a low current score compared to others have a lower probability of being chosen
by the client. If the client currently does not have any scorecards, then it can only con-
tact a server if it co-located with one, otherwise its service need will not be met in this
decision cycle.

Information Sharing.—If a client selects a server on a node that is currently
within reach, it sends a request to the server and shares the outcome of this interaction

with its direct neighbors. If the request is met, the client increases its own pro score of
that server by one and sends the same suggestion to its direct neighbors. If the request
is not met, the con scores are increased in the same way. These suggestions to the
neighbors may lead to the creation of new score cards at those neighbors if they had
not known about this server before. Thus knowledge about relevant servers spreads
through the network driven by the actual use of these servers. Furthermore, the suc-
cess or failure of the interaction with a server reinforces the preferences of the client
population and thus (with a random component to break symmetries) dynamically fo-
cuses the attention on a few active servers while encouraging de-activation for others
(see “Server Activation Learning”).

Truth Maintenance.—The constant change of the network topology, driven by
the node movements and their failures, requires that the client population continu-
ously update its knowledge about reachable servers and their evaluation. While the
score-sharing mechanism ensures that the performance of a reachable server is con-
tinuously re-evaluated, the clients still need a mechanism to forget references to serv-
ers that do not exist anymore or that are out of reach now. Otherwise, in long-term
operation of the system, the clients would drown in obsolete addresses.

A client “evaporates” its scores (pro and con individually) by multiplying them
with a globally fixed factor between zero and one in each decision cycle. Thus, both
scores approach zero over time if the client or its neighbors do not use the server
anymore. If both scores have fallen below a fixed threshold, then the scorecard is re-
moved from the client’s memory – the client forgets about this server.

A client also chooses to forget about a particular server, if the con score dominates
the pro score by a globally fixed ratio (con / (con + pro) > threshold > 0.5). Thus,
servers that are trained by the client population to be down are eventually removed
from the collective memory and are left untouched. They only return into the memory
of clients if all other servers have also been forgotten and their co-located client is
forced to use them.

3.3 Server Node Location Learning

In a co-evolutionary process, the server and client populations learn which clients
should focus on which servers. We can stabilize this preference pattern and reduce the
need for re-learning by decreasing the likelihood that the connection between a client
and its chosen server is disrupted. Since the risk for a disruption of the path between a
client and a server generally increases with the distance between their nodes, moving
the server node towards its current clients will decrease this risk.

We assume that any client and server processes have means to estimate their re-
spective node’s current spatial location and that the server node may actually control
its movement within certain constraints if it chooses to.

As a client sends a request to a server, it includes its current location in the request
message. The server node computes the vector between the client and the server loca-
tion and adds up all vectors from all requests within a decision cycle. Vectors of re-
quests that failed are negated before they are added to the sum. The resulting com-
bined vector determines the direction of the next move of the server node. If the
requests failed because the server process was down, then the node moves away from

the “center of gravity” of the clients that contacted this server. Otherwise, the node
will move toward these clients. The length of the step for the server node is fixed to a
global constant, characterizing the physical ability of the node to move.

3.4 Stigmergic Coordination

The coordinated behavior of many simple agents (server, client, node) in the highly
dynamic and disruptive MANET environment emerges from peer-to-peer interactions
in a shared environment driven by simple rules and dynamic local knowledge. The
individual components of the system are not explicitly aware of the overall system
functions of self-diagnosis and self-reconfiguration.

The coordination mechanism detailed in this demonstration is an example of stig-
mergy, in which individual agent activity is influenced by the state of the agent and its
local environment. As agent activity manipulates the environment, subsequent agent
activity dynamics may change (Figure 3). If this flow of information between the
agents through the environment establishes a feedback loop that decreases the entropy
of the options of the individual agents, then coordinated behavior emerges in the
population. We engineer the agent behavior and the indirect information flow, so that
the emergent coordinated behavior meets the design goal.

Three populations of processes (agents) contribute to the emerging system func-
tionality. Because each population operates in the shared network environment, the
other populations influence its dynamics. For instance, the clients coordinate their
server choice through the exchange of scores, but their ability to focus on only a few
servers depends on the server population’s ability to identify the emerging intention
of the clients and to maintain the server processes on the correct nodes. Figure 4 iden-
tifies the main flow of information among the three populations driven by their re-
spective dynamics and linked by the occurrence of successful or failed utilization
events – requests from clients to servers.

A common feature of the server activation learning and client preference learning
in our scheme is the combined reinforcement and decay of a critical decision parame-
ter (the countdown on the server; pro and con scores on the server scorecards main-
tained by clients). Elsewhere [14] we describe this sort of process as “pheromone
learning,” because it combines two of the hallmarks of insect pheromones: periodic
deposits, and constant background
evaporation. Pheromone learning can
be viewed as reversing the traditional
approach to truth maintenance. Rather
than maintaining any knowledge until
it is proven wrong, we begin to re-
move knowledge as soon as it is no
longer reinforced. This approach is
successfully demonstrated in natural
agent systems, such as ant colonies,
where information stored in phero-
mones begins to evaporate as soon as
it is laid down.

Population
Dynamics

Local State

Local State

Dynamics
Environment

Agent
Processes

Dynamic
Environment

Agents
Manipulate

Environment

Fig. 3. Stigmergic Coordination (general
schema)

4. Performance Analysis

As engineers, we need not only to conceive innovative architectures to address
challenging real-world problems, but also to analyze these architectures to determine
their performance as a function of deployment conditions. Such analysis requires
three elements: a baseline against which to compare the performance of the innova-
tion, a set of metrics to make this comparison, and experiments to apply the metrics to
the new system.

4.1 Baseline

Baselines for performance evaluation can be of two kinds. Sometimes we have per-
formance data for a conventional system and wish to show how our system compares
with it (a relative evaluation). In other cases we have an upper bound on performance,
a bound that may not be achievable in practice, but that shows how close to the theo-
retically best performance our solution (or any other) comes (an absolute evaluation).

In the case of MANET’s, we can define a global solution that provides the highest
possible request-success rate for the clients. We ignore the desire to preserve battery
power and let all server nodes execute the server process at all times (maximum
server availability). We use global knowledge (requiring very large bandwidth) to de-
termine for a client that wants to send a request, which available server nodes are cur-
rently in range (path exists), and then we select the recipient of the request randomly
from this set.

Observe
Performance

Adjust Preferences
in Neighborhood

Node Locations &
Comms Range

Node
Movement

Availability
State

Transition btw.
States

Length of
Countdown

Utilize
Server

Local Preferences
in Server-Selection

Node
Reachability

Server
Availability

Utilization Success
or Failure Event

Observe Performance &
Resource Usage

Client
Population

Server
Population

Node
Population

Local State

Dynamics

Server
Utilization

Force

Observe
Performance

Adjust Preferences
in Neighborhood

Node Locations &
Comms Range

Node
Movement

Availability
State

Transition btw.
States

Length of
Countdown

Utilize
Server

Local Preferences
in Server-Selection

Node
Reachability

Server
Availability

Utilization Success
or Failure Event

Node
Reachability

Server
Availability

Utilization Success
or Failure Event

Observe Performance &
Resource Usage

Client
Population

Server
Population

Node
Population

Local State

Dynamics

Server
Utilization

Force

Fig. 4. Stigmergic Coordination in MANET’s

This solution formally avoids sending requests to servers that are out of reach,
whose node is currently down, or whose server process is currently not executing. But
its resource requirements are too large to meet the severe constraints of the applica-
tion domain (ad-hoc mobile wireless network among battery-powered nodes). Also,
from a more programmatic point of view, this solution does not demonstrate emergent
cognition, since the complexity of the individual node (client) is as high as the sys-
tem-level complexity. Nevertheless, this solution provides us with a performance and
resource-usage baseline against which we measure our local approach in the
demonstration.

4.2 Metrics

We focus our attention on two metrics of a system under a particular set of deploy-
ment constraints: resource gain and performance loss. Both are ratios comparing a key
system-level feature with the baseline.

Resource gain describes the percentage of servers that our mechanism keeps on
standby, that would be running and burning power in the baseline. The total number
of servers is a constant in this scenario, and all of them are running in the baseline. So
resource gain is directly proportional to the total number of servers on standby.

Performance loss measures the failure of service events in our mechanism com-
pared with the baseline. Let

N = total number of service requests
Nb = total number of requests satisfied by the baseline;
Nt = total number of requests satisfied by the test system.
Since the baseline is the best possible in any given circumstance, Nt ≤ Nb ≤ N. Per-

formance loss is defined as (Nb – Nt)/(N - Nb). Unlike resource gain, performance loss
is compared against a changing baseline, since Nb varies with system configuration,
so we also track raw performance of our scheme.

4.3 Comparison with the Global Solution

With a baseline and metrics in hand, we can explore the performance of our system.
The following discussion is meant to be exemplary, not exhaustive. We explore the
variation in metrics as a function of three network characteristics: the degree of con-
nectivity, the dynamics of individual servers, and the overall demand from the clients.
Error bars in the plots are at ± 1 standard deviation, adjusted to avoid unphysical val-
ues (e.g., probabilities outside of [0,1]).

4.3.1 Configuration
Our experiments use a population of 100 nodes, of which 25 can serve as servers.
They are initially distributed randomly in an arena sized 100 x 100, so the average
area per node is 100, with radius ~5.6, and a mean internode separation on the order
of 11. At each time step, several parameters determine the dynamics of the system.
• Range is a measure of the communications range of the nodes, in the same units

that define the dimensions of the virtual world within which the nodes are distrib-

uted. The default setting is 15, which is greater than the mean internode separation
of 11.

• DownProb (pd) is the probability that a node will go out of service due to failure.
The default setting is 0.02.

• UpProb (pu) is the probability that a failed node will resume operation. The default
setting is 0.90.

• UtilizationRate is the probability that a given node requests service. The default
setting is 0.50.

• NodeMovementPolicy can be either directed (in which case servers and clients im-
plement the algorithm outlined in Section 3.3) or random (in which case the direc-
tion of movement is chosen randomly, as a zeroth-order approximation to mission
movement).

• ClientStepLength and ServerStepLength define the distance (in the same units as
Range) that a node moves in adjusting its location under either movement policy.
The defaults are 0.5 and 3.5, respectively.

4.3.2 Impact of Demand
Adaptive schemes such as ours require
a steady stream of information about
the environment, which in our case is
provided by the success or failure of
service requests. When service re-
quests are at a very low level, the sys-
tem cannot adapt effectively, reflected
in the performance changes. Figure 5
shows the impact of changing utiliza-
tion. All other parameters are fixed at
their default values.

The mean value of raw perform-
ance increases with utilization, and
performance loss decreases, but the
error bars show that these changes are
swamped by noise. It is important to
note that the variance is much greater
for low utilization (10%) than for the
higher levels. At low utilization, the
algorithm does not get sufficient in-
formation to make useful decisions,
but at higher utilization levels, its be-
havior converges.

0 0.2 0.4 0.6 0.8
Utilization

0.2
0.3
0.4
0.5
0.6
0.7

ecruoseR
nia

G

0 0.2 0.4 0.6 0.8
Utilization

0.7
0.75
0.8
0.85
0.9
0.95
1

ecna
mrofreP

0 0.2 0.4 0.6 0.8
Utilization

0

0.2

0.4

0.6

0.8

ecna
mrofreP

ssoL

Fig. 5. Impact of Varying Utilization

Resource gain drops with in-
creased utilization. The higher mes-
sage traffic stimulates servers to
remain awake that would otherwise
go to sleep, lowering the resource
benefits. The system successfully
adapts the number of active servers
to changes in the overall message
load.

This experiment is the basis for
fixing utilization in subsequent ex-
periments at 50%, a level that pro-
vides sufficient information to en-
able the algorithm to converge,
while still making it worthwhile for servers to sleep.

4.3.3 Impact of Network Connectivity
A critical characteristic of a
MANET is the range of the radios
that provide the communication
links. Figure 6 shows the raw per-
formance of our scheme and of the
baseline, using random node move-
ment. We hold all parameters at their
default settings and vary NodeRa-
dius. As expected, performance in-
creases monotonically with radio
range. Importantly, the performance
of our adaptive algorithm is indistin-
guishable from the baseline.

We have found that the directed
movement of servers toward selected clients is not effective as currently imple-
mented, as shown in Figure 7. More realistic movement models, suggested below,
might yield a different outcome. We do not report further results with directed move-
ment.

While the performance is compa-
rable between our mechanism and
the baseline, resource gain is not
(Figure 8; by definition, gain for the
baseline is 0). Clearly, our mecha-
nism improves resource utilization
significantly without impacting per-
formance, compared with a best-case
solution that may not be implement-
able.

0 5 10 15 20 25
Range

0
0.2
0.4
0.6
0.8
1

ecna
mrofreP

Fig. 6. Performance as Function of Range in Base-
line (solid) and adaptive algorithm (dashed).

0 5 10 15 20 25
Range

0
0.2
0.4
0.6
0.8
1

ecna
mrofreP

Fig. 7. Performance as Function of Range, with
(solid) and without (dashed)t Location Learning

0 5 10 15 20 25
Range

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

ecruoseR
nia

G

Fig. 8. Resource Gain as Function of Range

4.3.4 Impact of Network Dynamics
Figure 9 shows how resource gain, raw performance, and performance loss vary as a
function of server dynamics. Utilization is set at 0.5 and range at 15. For each metric,
the figure shows four cases.

pd = 0.1, pu = 0.9.—This configuration reflects highly reliable servers that seldom
go down and are quickly repaired, a “best case” scenario from the operational point of
view.

pd = 0.9, pu = 0.1.—This configuration reflects highly unstable servers that take a
long time to repair, a “worst case” scenario.

pd = pu = 0.5.—This configuration reflects symmetric mean-time-to-failure
(MTTF) and mean-time-to-repair (MTTR) with a moderate value.

pd = pu = 0.1.—This configuration reflects symmetric MTTF and MTTR with a
low value.

Consider first performance and performance loss. As might be expected, perform-
ance is good in the best case, bad in the worst case, and intermediate with symmetric
MTTF and MTTR. Interestingly, performance is not significantly different between
the two symmetric cases. The mean val-
ues of performance loss follow the same
general trend, though wide variances
make the differences less significant.
Performance loss is least in the best case,
when the system can reliably learn
which servers to employ.

Our algorithm shows resource gain in
all configurations, though with high vari-
ances in both worst and best case
conditions. (It is important to recognize
that wide variances that reach 0 do not
mean that the benefit is not statistically
significant. Resource gain for the base
case is identically zero by definition.
Any resource gain produced by the adap-
tive algorithm is a real benefit, since it
reflects power savings. The high vari-
ance simply means that the variation in
this savings from one cycle to another is
subject to wide swings, but the integral
over these swings, reflecting total power
saved, is unambiguously positive.) The
mean resource gain in these two cases is
almost the same, reflecting the benefits
of adaptivity in coping with unstable
systems.

In the case of equal and moderate
failure and recover probabilities, there is
little resource gain over the baseline.
This configuration changes so frequently

0.1, 0.9 0.1, 0.1 0.5, 0.5 0.9, 0.1
pd,pu

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35

ecruoseR
nia

G

0.1, 0.9 0.1, 0.1 0.5, 0.5 0.9, 0.1
pd,pu

0

0.2

0.4

0.6

0.8

1

ecna
mrofreP

0.1, 0.9 0.1, 0.1 0.5, 0.5 0.9, 0.1
pd,pu

0
0.2
0.4
0.6
0.8
1

ecna
mrofreP

ssoL

Fig. 9. Impact of Server Dynamics

that our learning process does not have time to adapt to the changed environment.

5. Comparison with Previous Research

Our system addresses all three aspects of the server management problem: given
the current topology of the network determined by node locations, communications
ranges and node availability, decide
1. which server nodes should actually expend battery power to execute the server

process;
2. to which server node a particular client should send its next service request; and
3. where to relocate server nodes to meet the current demand by the clients.

MANET’s are an active area of current research, but until recently the focus of the
MANET community has been on issues such as routing [9], access control [6], and
security [19]. These are important issues, but largely orthogonal to the question of
server management.

Recent research considers one aspect of the server management problem in
MANET’s, the second of our three questions (known as the service discovery prob-
lem). Efforts in this area can be divided into two groups.

Our approach is most similar to decentralized techniques such as flooding, swamp-
ing, and name-dropping (usefully reviewed in [7]), which all involve sharing knowl-
edge of accessible services among adjacent nodes. The novelty of our approach lies in
the use and propagation, not only of pointers to servers, but of scorecards to guide in
selecting the server that will be tried on a given attempt. The probabilistic nature of
our selection process adds robustness in the face of dynamic change. Conventional
sharing schemes explore such options as whether to share with all neighbors or only
with a subset at each cycle, and these options are reasonable enhancements to explore
with our mechanisms.

More recent work on service discovery, and that devoted specifically to MANET’s,
uses service brokers to maintain directories of available servers [5, 8, 10, 18]. Highly
dynamic environments (such as those encountered in military applications) can frus-
trate directory-based schemes.

In addition to providing a robust decentralized solution to the widely studied ser-
vice discovery mechanism, our approach offers an integrated solution to the less ex-
plored problems of server activation and location. By addressing all three problems
with a single set of mechanisms, we reduce the complexity of the overall system and
facilitate making necessary trade-offs against different operating options, compared
with approaches that piece together independent solutions to each problem.

6. Discussion and Conclusion

Swarming fine-grained agents offer an effective approach to real-time control of mo-
bile ad-hoc networks. Our experiments show that we can reduce the resource re-
quirements for servers in a MANET without significantly diminishing the system’s

performance, relative to an optimistic and probably unachievable baseline. Our ex-
periments suggest two guidelines for when such approaches are applicable.
1. Because we rely on feedback from client attempts to access service as our source

of information about the environment, the system requires a reasonable level of
utilization. It is not appropriate for systems that are rarely utilized, but that must
work appropriately when they are occasionally activated. However, the algorithms
do adapt appropriately over a wide range of utilization levels.

2. Our methods work well when either failure probability or repair probability is low,
since these characteristics lead to fairly stable server populations. When the prob-
abilities of server failure and server repair are both high, the world changes too
rapidly for our agents’ pheromone learning mechanisms, and system efficiency (as
measured by resource gain) suffers.
The system described here is a highly simplified initial model of the MANET do-

main. We hope to explore several extensions of this domain.
• This model assumes that the movements of all vehicles are equally constrained by

the same movement policy, either random (to simulate mission movement) or di-
rected (to improve communications effectiveness). Using task allocation mecha-
nisms similar to those we explored in [13], it would be interesting to examine fleets
in which different platforms follow different movement policies, enabling some
platforms learn to specialize as communication relays, and leaving other platforms
more latitude for their mission-oriented tasks.

• It will also be important to examine the effect of more realistic models of mission-
related movement, instead of the surrogate of random motion used here. For exam-
ple, we might explore space-filling behavior to model exploratory missions, or di-
vergence and reforming of the fleet as it moves in a general geographical direction.

• The preliminary results reported here do not show any benefit to directed move-
ment of servers with respect to their emerging client populations. This result is
counter-intuitive, and we wish to do further analysis and experimentation to under-
stand whether and under what circumstances servers can improve system perform-
ance by directed movement.

• The breakdown of our system at low utilization levels may be mitigated in part if
we make use of the “heartbeat” signals that communication nodes routinely ex-
change to monitor their connectivity, and we wish to explore ways that these sig-
nals can contribute to the service provider problem.

• Service provision is only one of many functions that a MANET can provide. We
believe our mechanisms hold far more general promise, and look forward to ex-
panding them into a general scheme for MANET management.
Using self-organization and emergence to engineer system-level functionality may

be advantageous in many application domains, but often it is not obvious how to de-
sign the underlying processes to achieve the desired function. We discuss this aspect
of the problem elsewhere [3].

6. Acknowledgments

This work is supported in part by the DARPA Knowledge-Plane seedling study, con-
tract N00014-03-M-0252 to Altarum, under DARPA PM Christopher Ramming. The
views and conclusions in this document are those of the authors and should not be in-
terpreted as representing the official policies, either expressed or implied, of the De-
fense Advanced Research Projects Agency or the US Government.

7. References

[1] G. Aggelou. Mobile Ad Hoc Network (MANET) Papers. vol. 2004, pages Web page,
University of Surrey, Guildford, UK, 1999. Available at
http://www.ee.surrey.ac.uk/Personal/G.Aggelou/MANET_PUBLICATIONS.html.

[2] S. Brueckner. Return from the Ant: Synthetic Ecosystems for Manufacturing Control.
Dr.rer.nat. Thesis at Humboldt University Berlin, Department of Computer Science,
2000. Available at http://dochost.rz.hu-berlin.de/dissertationen/brueckner-sven-2000-
06-21/PDF/Brueckner.pdf.

[3] S. Brueckner and H. V. D. Parunak. Self-Organizing MANET Management. In Pro-
ceedings of Workshop on Engineering Self-Organising Agents (AAMAS 2003), pages
(in press), Springer, 2003.

[4] S. A. Brueckner and H. V. D. Parunak. Swarming Agents for Distributed Pattern De-
tection and Classification. In Proceedings of Workshop on Ubiquitous Computing,
AAMAS 2002, 2002. Available at
http://www.altarum.net/~vparunak/PatternDetection01.pdf.

[5] L. Cheng. Service Advertisement and Discovery in Mobile Ad hoc Networks. In Pro-
ceedings of Workshop on Ad hoc Communications and Collaboration in Ubiquitous
Computing Environments (ACM CSCW 2002), ACM, 2002. Available at
http://www.cs.uoregon.edu/research/wearables/cscw2002ws/papers/Cheng.pdf.

[6] Z. J. Haas, J. Deng, and S. Tabrizi. Collision-Free Medium Access Control Scheme
for Ad-Hoc Networks. In Proceedings of IEEE MILCOM'99, IEEE, 1999. Available
at http://wnl.ece.cornell.edu/Publications/milcom99_mac.ps.

[7] M. Harchol-Balter, T. Leighton, and D. Lewin. Resource Discovery in Distributed
Networks. In Proceedings of 18th Annual ACM-SIGACT/SIGOPS Symposium on
Principles of Distributed Computing, pages 229-238, ACM, 1999.

[8] U. C. Kozat and L. Tassiulas. Network Layer Support for Service Discovery in Mo-
bile Ad Hoc Networks. In Proceedings of IEEE INFOCOM 2003, IEEE, 2003.
Available at http://www.ieee-infocom.org/2003/papers/48_02.PDF.

[9] S. Lee, W. Su, J. Hsu, M. Gerla, and R. Bagrodia. A performance comparison study
of ad hoc wireless multicast protocols. In Proceedings of IEEE Infocom’2000, pages
565–574, IEEE, 2000.

[10] J. Liu, Q. Zhang, W. Zhu, and B. Li. Service Locating for Large-Scale Mobile Ad
Hoc Network. International Journal of Wireless Information Networks, 10(1 (Janu-
ary)):33-40, 2003. Available at
http://research.microsoft.com/asia/dload_files/group/wireless/2002p/IJWIN.pdf.

[11] H. V. D. Parunak. ’Go to the Ant’: Engineering Principles from Natural Agent Sys-
tems. Annals of Operations Research, 75:69-101, 1997. Available at
http://www.altarum.net/~vparunak/gotoant.pdf.

[12] H. V. D. Parunak. Making Swarming Happen. In Proceedings of Swarming and Net-
work-Enabled C4ISR, ASD C3I, 2003. Available at
http://www.altarum.net/~vparunak/MSH03.pdf.

[13] H. V. D. Parunak and S. Brueckner. Swarming Coordination of Multiple UAV's for
Collaborative Sensing. In Proceedings of Second AIAA "Unmanned Unlimited" Sys-
tems, Technologies, and Operations Conference, AIAA, 2003. Available at
http://www.altarum.net/~vparunak/AIAA03.pdf.

[14] H. V. D. Parunak, S. Brueckner, R. Matthews, and J. Sauter. How to Calm Hyperac-
tive Agents. In Proceedings of Autonomous Agents and Multi-Agent Systems (AAMAS
2003), pages 1092-1093, 2003. Available at
http://www.altarum.net/~vparunak/AAMAS03Ritalin.pdf.

[15] H. V. D. Parunak and S. A. Brueckner. Engineering Swarming Systems. In F. Ber-
genti, M.-P. Gleizes, and F. Zambonelli, Editors, Methodologies and Software Engi-
neering for Agent Systems, pages (forthcoming). Kluwer, 2004. Available at
http://www.altarum.net/~vparunak/MSEAS03.pdf.

[16] H. V. D. Parunak, M. Purcell, and R. O'Connell. Digital Pheromones for Autonomous
Coordination of Swarming UAV's. In Proceedings of First AIAA Unmanned Aero-
space Vehicles, Systems,Technologies, and Operations Conference, AIAA, 2002.
Available at www.altarum.net/~vparunak/AIAA02.pdf.

[17] P. Weinstein, H. V. D. Parunak, P. Chiusano, and S. Brueckner. Agents Swarming in
Semantic Spaces to Corroborate Hypotheses. In Proceedings of AAMAS 2004, pages
(forthcoming), 2004. Available at
http://www.altarum.net/~vparunak/AAMAS04AntCAFE.pdf.

[18] J. Wu and M. Zitterbart. Service Awareness and its Challenges in Mobile Ad Hoc
Networks. In Proceedings of Workshop der Informatik 2001: Mobile Communication
over Wireless LAN, 2001. Available at http://www.iponair.de/publications/Wu-
Informatik01.pdf.

[19] L. Zhou and Z. J. Haas. Securing Ad Hoc Networks. IEEE Network Magazine, 13(6
(November-December)), 1999. Available at
http://wnl.ece.cornell.edu/Publications/network99.ps.

