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Abstract. In recent years, mobile ad-hoc networks (MANET’s) have been de-
ployed in various scenarios, but their scalability is severely restricted by the 
human operators’ ability to configure and manage the network in the face of 
rapid change of the network structure and demand patterns. In this paper, we 
present a self-organizing approach to MANET management based on stigmer-
gic agents and demonstrate how to analyze its performance under different de-
ployment assumptions. Our results emphasize the importance of attention to no-
tions from dynamical systems theory in designing and deploying multi-agent 
systems. 

1. Introduction 

The challenges of managing mobile ad-hoc networks (MANET’s) [1] may overwhelm 
traditional network management approaches. Such networks are highly dynamic, se-
verely constrained in their processing and communications resources, distributed and 
decentralized. Thus, centralized management approaches requiring accurate and de-
tailed knowledge about the state of the overall system may fail, while decentralized 
and distributed strategies become competitive. 

We have successfully applied fine-grained agent architecture modeled on algo-
rithms used in biological systems [11] to a range of real-world problems, including 
manufacturing control [2], pattern recognition in sensor networks [4], collaboration 
and task assignment among multiple mobile platforms [13], path planning for un-
manned vehicles [16], and information retrieval in massive data [17]. This paper ex-
plores the applicability of these mechanisms to another domain, mobile ad-hoc com-
munication networks (MANET’s). Like other domains in which swarming is 
effective, MANET’s are distributed, decentralized, and dynamic. Self-organizing sys-
tems of agents with emergent system-level functions offer an approach that is robust, 
flexible, adaptive and scalable. By applying our techniques to a new domain, we gain 
experience with their capabilities and restrictions, and further exercise the develop-
ment methodology that we are developing for such systems [12, 15].  

Section 2 presents a concrete management problem in the MANET domain. Sec-
tion 3 offers a solution based on fine-grained agents dynamically interacting in the 
network environment. Section 4 offers experimental evidence for the effectiveness of 
our solution. Section 5 concludes. 
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2. The MANET Server 
Management Problem 

Figure 1 offers an overview of the 
MANET domain. Assume a network 
of (randomly) moving nodes that may 
communicate within a limited range, 
and may fail temporarily. A canonical 
example of an application for a 
MANET is a fleet of vehicles (say, 
trucks or dismounted troops in a mili-
tary operation, or rovers exploring a 
remote planet) equipped with line-of-
sight radios.  
We focus our attention on configura-
tions in which nodes may host distinct 
client and server processes. Every 
node carries a client and some nodes 
carry a server process. Examples of 
services that might be restricted to 
some vehicles include  
• long-range communications links 

back to a remote commander; 
• wide-range sensors that can pro-

vide an integrating context for more local sensors carried on most vehicles; 
• target recognition databases and data fusion capabilities that can provide interpre-

tive support for platforms with more local access. 
A server provides a stateless and instantaneous service to a client upon request if 

there exists a communications path between the client and the server and if the server 
node is currently active. Servers in our model have no capacity constraints, and may 
serve as many clients at the same time as requests arrive. 

Because the nodes are mobile, weight and space are constrained, limiting the 
power available for communications and processing. Some of the likely services 
(long-range communications or sensing) impose especially high power demands on 
the servers, making it desirable to operate them only when they are needed to support 
the demands from the rest of the fleet. Vehicle movement must satisfy two con-
straints: achieving mission objectives and maintaining communication connectivity. 
In the simple example we describe here, all vehicles share both objectives, but tech-
niques that we have demonstrated elsewhere [13] permit vehicles to specialize for dif-
ferent tasks, so that some vehicles would dedicate themselves to serving as communi-
cation relays, reducing the constraints on the other vehicles imposed by the need to 
maintain connectivity. 

The server management problem requires answering three questions: given the cur-
rent topology of the network determined by node locations, communications ranges 
and node availability, decide 
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Fig. 1. Domain Overview 



1. which server nodes should actually 
expend battery power to execute the 
server process; 

2. to which server node a particular cli-
ent should send its next service re-
quest; and 

3. where to relocate server nodes to 
meet the current demand by the cli-
ents. 
Thus, the network must be provided 

with mechanisms that self-diagnose the 
current network state (e.g., breaking of 
connections, availability of new con-
nections, failure of nodes) and provide 
the information in a way that enables it 
to self-configure the ongoing processes 
appropriately. These functions could be 
satisfied if all servers executed con-
stantly and if all clients had global 
knowledge of the overall system (Fig-
ure 2), but such a solution is impracti-
cal. 

3. Emergent MANET Management 

A fine-grained, self-organizing agent system can solve the service location problem 
specified in Section 2. Our solution starts with the following initial conditions: 
• Server processes shut down immediately if no requests arrive. 
• A client does not know about the location of servers in the network, unless the cli-

ent is co-located with a server on the same node. 
• Server nodes move randomly (a zeroth order approximation to mission-motivated 

movement).. 
Thus, in terms of our design goals, we preserve maximum battery power, but most 

clients’ service needs are not met since they don’t know which server to address. 
We now define a co-evolutionary learning process based on individual reinforce-

ment. This learning process has three components.  
1. The server population learns to maintain an appropriate number of active server 

processes,  
2. and to adjust the position of these processes as they learn about the clients who are 

using them.  
3. The client population learns to direct requests to active servers. 
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3.1 Server Activation Learning 

Any server node is aware of the incoming requests from one or more clients. If the 
server process is running, then these requests are served, otherwise they fail, but the 
node will immediately start up the server process to be available for any new requests 
in the next cycle. While the server process is running, it tracks the number of incom-
ing requests. If there are no requests, it will begin a countdown. It will either abort the 
countdown if new requests arrive (and are served), or shut down if it reaches the end 
of the countdown. 

Initially, the duration of the countdown is zero. Thus, server processes are shut 
down as soon as no new requests come in. We define the following simple reinforce-
ment learning process to adjust the duration of the next countdown: 

(+) If a request from a client arrives and the server process is down, we increase 
the length of the countdown period for subsequent countdowns, since apparently the 
server should have been up and we lost performance (failed to serve a request) while 
the server was down. 

(–) If no request arrives while the countdown proceeds and the server process 
reaches the end of the countdown, then we decrease the length of the countdown pe-
riod for subsequent countdowns, since apparently the server could have been down al-
ready and we wasted resources (battery power) while the server was up. 

Driven by the demand pattern as it is perceived at the particular server node, the 
server process learns to maintain the optimal availability. In effect, the server learns 
the mean time between requests and adjusts its countdown length accordingly to stay 
up long enough. With this learning mechanism in place, the client population will 
now assume the role of the teacher as it generates a demand signal that leads some 
servers to stay down (extremely short countdown) while others stay consistently up 
(extremely long countdowns). 

3.2 Client Preference Learning 

Initially, only clients that are co-located with a server on the same node have any in-
formation about possible server addresses. These clients will become the source of 
knowledge of the client population as they share this information with their neighbors. 

Knowledge Representation.—Clients manage their knowledge about and evalua-
tion of specific servers in a dynamic set of scorecards, one for each server they know. 
A scorecard carries the address of the server, a score in favor (pro) and a score against 
(con) using this server. The current score of a server is computed as pro - con. 

Decision Process.—When a client needs to select a server, it normalizes the cur-
rent scores of all scorecards so that they add up to one and selects a server with a 
probability equal to the normalized score (roulette wheel selection). Thus, servers 
with a low current score compared to others have a lower probability of being chosen 
by the client. If the client currently does not have any scorecards, then it can only con-
tact a server if it co-located with one, otherwise its service need will not be met in this 
decision cycle. 

Information Sharing.—If a client selects a server on a node that is currently 
within reach, it sends a request to the server and shares the outcome of this interaction 



with its direct neighbors. If the request is met, the client increases its own pro score of 
that server by one and sends the same suggestion to its direct neighbors. If the request 
is not met, the con scores are increased in the same way. These suggestions to the 
neighbors may lead to the creation of new score cards at those neighbors if they had 
not known about this server before. Thus knowledge about relevant servers spreads 
through the network driven by the actual use of these servers. Furthermore, the suc-
cess or failure of the interaction with a server reinforces the preferences of the client 
population and thus (with a random component to break symmetries) dynamically fo-
cuses the attention on a few active servers while encouraging de-activation for others 
(see “Server Activation Learning”). 

Truth Maintenance.—The constant change of the network topology, driven by 
the node movements and their failures, requires that the client population continu-
ously update its knowledge about reachable servers and their evaluation. While the 
score-sharing mechanism ensures that the performance of a reachable server is con-
tinuously re-evaluated, the clients still need a mechanism to forget references to serv-
ers that do not exist anymore or that are out of reach now. Otherwise, in long-term 
operation of the system, the clients would drown in obsolete addresses. 

A client “evaporates” its scores (pro and con individually) by multiplying them 
with a globally fixed factor between zero and one in each decision cycle. Thus, both 
scores approach zero over time if the client or its neighbors do not use the server 
anymore. If both scores have fallen below a fixed threshold, then the scorecard is re-
moved from the client’s memory – the client forgets about this server. 

A client also chooses to forget about a particular server, if the con score dominates 
the pro score by a globally fixed ratio ( con / ( con + pro ) > threshold > 0.5 ). Thus, 
servers that are trained by the client population to be down are eventually removed 
from the collective memory and are left untouched. They only return into the memory 
of clients if all other servers have also been forgotten and their co-located client is 
forced to use them. 

3.3 Server Node Location Learning 

In a co-evolutionary process, the server and client populations learn which clients 
should focus on which servers. We can stabilize this preference pattern and reduce the 
need for re-learning by decreasing the likelihood that the connection between a client 
and its chosen server is disrupted. Since the risk for a disruption of the path between a 
client and a server generally increases with the distance between their nodes, moving 
the server node towards its current clients will decrease this risk. 

We assume that any client and server processes have means to estimate their re-
spective node’s current spatial location and that the server node may actually control 
its movement within certain constraints if it chooses to. 

As a client sends a request to a server, it includes its current location in the request 
message. The server node computes the vector between the client and the server loca-
tion and adds up all vectors from all requests within a decision cycle. Vectors of re-
quests that failed are negated before they are added to the sum. The resulting com-
bined vector determines the direction of the next move of the server node. If the 
requests failed because the server process was down, then the node moves away from 



the “center of gravity” of the clients that contacted this server. Otherwise, the node 
will move toward these clients. The length of the step for the server node is fixed to a 
global constant, characterizing the physical ability of the node to move. 

3.4 Stigmergic Coordination 

The coordinated behavior of many simple agents (server, client, node) in the highly 
dynamic and disruptive MANET environment emerges from peer-to-peer interactions 
in a shared environment driven by simple rules and dynamic local knowledge. The 
individual components of the system are not explicitly aware of the overall system 
functions of self-diagnosis and self-reconfiguration. 

The coordination mechanism detailed in this demonstration is an example of stig-
mergy, in which individual agent activity is influenced by the state of the agent and its 
local environment. As agent activity manipulates the environment, subsequent agent 
activity dynamics may change (Figure 3). If this flow of information between the 
agents through the environment establishes a feedback loop that decreases the entropy 
of the options of the individual agents, then coordinated behavior emerges in the 
population. We engineer the agent behavior and the indirect information flow, so that 
the emergent coordinated behavior meets the design goal. 

Three populations of processes (agents) contribute to the emerging system func-
tionality. Because each population operates in the shared network environment, the 
other populations influence its dynamics. For instance, the clients coordinate their 
server choice through the exchange of scores, but their ability to focus on only a few 
servers depends on the server population’s ability to identify the emerging intention 
of the clients and to maintain the server processes on the correct nodes. Figure 4 iden-
tifies the main flow of information among the three populations driven by their re-
spective dynamics and linked by the occurrence of successful or failed utilization 
events – requests from clients to servers. 

A common feature of the server activation learning and client preference learning 
in our scheme is the combined reinforcement and decay of a critical decision parame-
ter (the countdown on the server; pro and con scores on the server scorecards main-
tained by clients). Elsewhere [14] we describe this sort of process as “pheromone 
learning,” because it combines two of the hallmarks of insect pheromones: periodic 
deposits, and constant background 
evaporation. Pheromone learning can 
be viewed as reversing the traditional 
approach to truth maintenance. Rather 
than maintaining any knowledge until 
it is proven wrong, we begin to re-
move knowledge as soon as it is no 
longer reinforced. This approach is 
successfully demonstrated in natural 
agent systems, such as ant colonies, 
where information stored in phero-
mones begins to evaporate as soon as 
it is laid down. 
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Fig. 3. Stigmergic Coordination (general 
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4. Performance Analysis 

As engineers, we need not only to conceive innovative architectures to address 
challenging real-world problems, but also to analyze these architectures to determine 
their performance as a function of deployment conditions. Such analysis requires 
three elements: a baseline against which to compare the performance of the innova-
tion, a set of metrics to make this comparison, and experiments to apply the metrics to 
the new system. 

4.1 Baseline 

Baselines for performance evaluation can be of two kinds. Sometimes we have per-
formance data for a conventional system and wish to show how our system compares 
with it (a relative evaluation). In other cases we have an upper bound on performance, 
a bound that may not be achievable in practice, but that shows how close to the theo-
retically best performance our solution (or any other) comes (an absolute evaluation). 

In the case of MANET’s, we can define a global solution that provides the highest 
possible request-success rate for the clients. We ignore the desire to preserve battery 
power and let all server nodes execute the server process at all times (maximum 
server availability). We use global knowledge (requiring very large bandwidth) to de-
termine for a client that wants to send a request, which available server nodes are cur-
rently in range (path exists), and then we select the recipient of the request randomly 
from this set. 
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This solution formally avoids sending requests to servers that are out of reach, 
whose node is currently down, or whose server process is currently not executing. But 
its resource requirements are too large to meet the severe constraints of the applica-
tion domain (ad-hoc mobile wireless network among battery-powered nodes). Also, 
from a more programmatic point of view, this solution does not demonstrate emergent 
cognition, since the complexity of the individual node (client) is as high as the sys-
tem-level complexity. Nevertheless, this solution provides us with a performance and 
resource-usage baseline against which we measure our local approach in the 
demonstration. 

4.2 Metrics 

We focus our attention on two metrics of a system under a particular set of deploy-
ment constraints: resource gain and performance loss. Both are ratios comparing a key 
system-level feature with the baseline.  

Resource gain describes the percentage of servers that our mechanism keeps on 
standby, that would be running and burning power in the baseline. The total number 
of servers is a constant in this scenario, and all of them are running in the baseline. So 
resource gain is directly proportional to the total number of servers on standby. 

Performance loss measures the failure of service events in our mechanism com-
pared with the baseline. Let  

N = total number of service requests 
Nb = total number of requests satisfied by the baseline; 
Nt = total number of requests satisfied by the test system.  
Since the baseline is the best possible in any given circumstance, Nt ≤ Nb ≤ N. Per-

formance loss is defined as (Nb – Nt)/(N - Nb). Unlike resource gain, performance loss 
is compared against a changing baseline, since Nb varies with system configuration, 
so we also track raw performance of our scheme.  

4.3 Comparison with the Global Solution 

With a baseline and metrics in hand, we can explore the performance of our system. 
The following discussion is meant to be exemplary, not exhaustive. We explore the 
variation in metrics as a function of three network characteristics: the degree of con-
nectivity, the dynamics of individual servers, and the overall demand from the clients. 
Error bars in the plots are at ± 1 standard deviation, adjusted to avoid unphysical val-
ues (e.g., probabilities outside of [0,1]). 

4.3.1 Configuration 
Our experiments use a population of 100 nodes, of which 25 can serve as servers. 
They are initially distributed randomly in an arena sized 100 x 100, so the average 
area per node is 100, with radius ~5.6, and a mean internode separation on the order 
of 11. At each time step, several parameters determine the dynamics of the system. 
• Range is a measure of the communications range of the nodes, in the same units 

that define the dimensions of the virtual world within which the nodes are distrib-



uted. The default setting is 15, which is greater than the mean internode separation 
of 11.  

• DownProb (pd) is the probability that a node will go out of service due to failure. 
The default setting is 0.02. 

• UpProb (pu) is the probability that a failed node will resume operation. The default 
setting is 0.90. 

• UtilizationRate is the probability that a given node requests service. The default 
setting is 0.50. 

• NodeMovementPolicy can be either directed (in which case servers and clients im-
plement the algorithm outlined in Section 3.3) or random (in which case the direc-
tion of movement is chosen randomly, as a zeroth-order approximation to mission 
movement). 

• ClientStepLength and ServerStepLength define the distance (in the same units as 
Range) that a node moves in adjusting its location under either movement policy. 
The defaults are 0.5 and 3.5, respectively. 

4.3.2 Impact of Demand 
Adaptive schemes such as ours require 
a steady stream of information about 
the environment, which in our case is 
provided by the success or failure of 
service requests. When service re-
quests are at a very low level, the sys-
tem cannot adapt effectively, reflected 
in the performance changes. Figure 5 
shows the impact of changing utiliza-
tion. All other parameters are fixed at 
their default values.  

The mean value of raw perform-
ance increases with utilization, and 
performance loss decreases, but the 
error bars show that these changes are 
swamped by noise. It is important to 
note that the variance is much greater 
for low utilization (10%) than for the 
higher levels. At low utilization, the 
algorithm does not get sufficient in-
formation to make useful decisions, 
but at higher utilization levels, its be-
havior converges. 
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Fig. 5. Impact of Varying Utilization 



Resource gain drops with in-
creased utilization. The higher mes-
sage traffic stimulates servers to 
remain awake that would otherwise 
go to sleep, lowering the resource 
benefits. The system successfully 
adapts the number of active servers 
to changes in the overall message 
load.  

This experiment is the basis for 
fixing utilization in subsequent ex-
periments at 50%, a level that pro-
vides sufficient information to en-
able the algorithm to converge, 
while still making it worthwhile for servers to sleep. 

4.3.3 Impact of Network Connectivity 
A critical characteristic of a 
MANET is the range of the radios 
that provide the communication 
links. Figure 6 shows the raw per-
formance of our scheme and of the 
baseline, using random node move-
ment. We hold all parameters at their 
default settings and vary NodeRa-
dius. As expected, performance in-
creases monotonically with radio 
range. Importantly, the performance 
of our adaptive algorithm is indistin-
guishable from the baseline.  

We have found that the directed 
movement of servers toward selected clients is not effective as currently imple-
mented, as shown in Figure 7. More realistic movement models, suggested below, 
might yield a different outcome. We do not report further results with directed move-
ment. 

While the performance is compa-
rable between our mechanism and 
the baseline, resource gain is not 
(Figure 8; by definition, gain for the 
baseline is 0). Clearly, our mecha-
nism improves resource utilization 
significantly without impacting per-
formance, compared with a best-case 
solution that may not be implement-
able.  
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Fig. 6. Performance as Function of Range in Base-
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Fig. 7. Performance as Function of Range, with 
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4.3.4 Impact of Network Dynamics 
Figure 9 shows how resource gain, raw performance, and performance loss vary as a 
function of server dynamics. Utilization is set at 0.5 and range at 15. For each metric, 
the figure shows four cases. 

pd = 0.1, pu = 0.9.—This configuration reflects highly reliable servers that seldom 
go down and are quickly repaired, a “best case” scenario from the operational point of 
view. 

pd = 0.9, pu = 0.1.—This configuration reflects highly unstable servers that take a 
long time to repair, a “worst case” scenario. 

pd = pu = 0.5.—This configuration reflects symmetric mean-time-to-failure 
(MTTF) and mean-time-to-repair (MTTR) with a moderate value. 

pd = pu = 0.1.—This configuration reflects symmetric MTTF and MTTR with a 
low value. 

Consider first performance and performance loss. As might be expected, perform-
ance is good in the best case, bad in the worst case, and intermediate with symmetric 
MTTF and MTTR. Interestingly, performance is not significantly different between 
the two symmetric cases. The mean val-
ues of performance loss follow the same 
general trend, though wide variances 
make the differences less significant. 
Performance loss is least in the best case, 
when the system can reliably learn 
which servers to employ. 

Our algorithm shows resource gain in 
all configurations, though with high vari-
ances in both worst and best case 
conditions. (It is important to recognize 
that wide variances that reach 0 do not 
mean that the benefit is not statistically 
significant. Resource gain for the base 
case is identically zero by definition. 
Any resource gain produced by the adap-
tive algorithm is a real benefit, since it 
reflects power savings. The high vari-
ance simply means that the variation in 
this savings from one cycle to another is 
subject to wide swings, but the integral 
over these swings, reflecting total power 
saved, is unambiguously positive.) The 
mean resource gain in these two cases is 
almost the same, reflecting the benefits 
of adaptivity in coping with unstable 
systems.  

In the case of equal and moderate 
failure and recover probabilities, there is 
little resource gain over the baseline. 
This configuration changes so frequently 
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that our learning process does not have time to adapt to the changed environment.  

5. Comparison with Previous Research 

Our system addresses all three aspects of the server management problem: given 
the current topology of the network determined by node locations, communications 
ranges and node availability, decide 
1. which server nodes should actually expend battery power to execute the server 

process; 
2. to which server node a particular client should send its next service request; and 
3. where to relocate server nodes to meet the current demand by the clients. 

MANET’s are an active area of current research, but  until recently the focus of the 
MANET community has been on issues such as routing [9], access control [6], and 
security [19]. These are important issues, but largely orthogonal to the question of 
server management. 

Recent research considers one aspect of the server management problem in 
MANET’s, the second of our three questions (known as the service discovery prob-
lem). Efforts in this area can be divided into two groups. 

Our approach is most similar to decentralized techniques such as flooding, swamp-
ing, and name-dropping (usefully reviewed in [7]), which all involve sharing knowl-
edge of accessible services among adjacent nodes. The novelty of our approach lies in 
the use and propagation, not only of pointers to servers, but of scorecards to guide in 
selecting the server that will be tried on a given attempt. The probabilistic nature of 
our selection process adds robustness in the face of dynamic change. Conventional 
sharing schemes explore such options as whether to share with all neighbors or only 
with a subset at each cycle, and these options are reasonable enhancements to explore 
with our mechanisms.  

More recent work on service discovery, and that devoted specifically to MANET’s, 
uses service brokers to maintain directories of available servers [5, 8, 10, 18]. Highly 
dynamic environments (such as those encountered in military applications) can frus-
trate directory-based schemes.  

In addition to providing a robust decentralized solution to the widely studied ser-
vice discovery mechanism, our approach offers an integrated solution to the less ex-
plored problems of server activation and location. By addressing all three problems 
with a single set of mechanisms, we reduce the complexity of the overall system and 
facilitate making necessary trade-offs against different operating options, compared 
with approaches that piece together independent solutions to each problem.  

6. Discussion and Conclusion 

Swarming fine-grained agents offer an effective approach to real-time control of mo-
bile ad-hoc networks. Our experiments show that we can reduce the resource re-
quirements for servers in a MANET without significantly diminishing the system’s 



performance, relative to an optimistic and probably unachievable baseline. Our ex-
periments suggest two guidelines for when such approaches are applicable.  
1. Because we rely on feedback from client attempts to access service as our source 

of information about the environment, the system requires a reasonable level of 
utilization. It is not appropriate for systems that are rarely utilized, but that must 
work appropriately when they are occasionally activated. However, the algorithms 
do adapt appropriately over a wide range of utilization levels. 

2. Our methods work well when either failure probability or repair probability is low, 
since these characteristics lead to fairly stable server populations. When the prob-
abilities of server failure and server repair are both high, the world changes too 
rapidly for our agents’ pheromone learning mechanisms, and system efficiency (as 
measured by resource gain) suffers. 
The system described here is a highly simplified initial model of the MANET do-

main. We hope to explore several extensions of this domain.  
• This model assumes that the movements of all vehicles are equally constrained by 

the same movement policy, either random (to simulate mission movement) or di-
rected (to improve communications effectiveness). Using task allocation mecha-
nisms similar to those we explored in [13], it would be interesting to examine fleets 
in which different platforms follow different movement policies, enabling some 
platforms learn to specialize as communication relays, and leaving other platforms 
more latitude for their mission-oriented tasks. 

• It will also be important to examine the effect of more realistic models of mission-
related movement, instead of the surrogate of random motion used here. For exam-
ple, we might explore space-filling behavior to model exploratory missions, or di-
vergence and reforming of the fleet as it moves in a general geographical direction. 

• The preliminary results reported here do not show any benefit to directed move-
ment of servers with respect to their emerging client populations. This result is 
counter-intuitive, and we wish to do further analysis and experimentation to under-
stand whether and under what circumstances servers can improve system perform-
ance by directed movement. 

• The breakdown of our system at low utilization levels may be mitigated in part if 
we make use of the “heartbeat” signals that communication nodes routinely ex-
change to monitor their connectivity, and we wish to explore ways that these sig-
nals can contribute to the service provider problem. 

• Service provision is only one of many functions that a MANET can provide. We 
believe our mechanisms hold far more general promise, and look forward to ex-
panding them into a general scheme for MANET management. 
Using self-organization and emergence to engineer system-level functionality may 

be advantageous in many application domains, but often it is not obvious how to de-
sign the underlying processes to achieve the desired function. We discuss this aspect 
of the problem elsewhere [3]. 
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