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Abstract—A number of studies have explored the dynamics of 

opinion change among interacting knowledge workers, using 

different modeling techniques. We are particularly interested 

in the transition from cognitive convergence (a positive group 

phenomenon) to collapse (which can lead to overlooking 

critical information). This paper extends previous agent-based 

studies of this subject in two directions. First, we allow agents 

to belong to distinct social groups and explore the effect of 

varying degrees of within-group affinity. Second, we provide 

exogenous drivers of agent opinion in the form of a dynamic 

set of documents that they may query. We exhibit a metastable 

configuration of this system with three distinct phases, and 

develop an operational metric for distinguishing convergence 

from collapse in the final phase. Then we use this metric to 

explore the system’s dynamics, over the space defined by social 

affinity and precision of queries against documents, and under 

a range of different functions for the influence that an 

interaction partner has on an agent. 
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I.  INTRODUCTION  

Humans form opinions and interests by interactions with 
their peers (collaboration) and with information sources 
(search). The pattern of these interactions emerges from the 
structure of a person’s environment (social network, access 
to information sources) and the person’s current opinions. In 
turn, the evolution of a person’s interest may shape the 
environment, resulting in a complex feedback process. As a 
result of such dynamics, 
collective cognitive effects 
may emerge at the system 
level (across groups of 
people) that can dominate the 
individuals’ opinion 
evolution without the 
person’s being aware of 
them. One common 
phenomenon is alignment of 
opinions, a process that is 
sometimes called “consensus 
formation” [1] or “collective 
cognitive convergence” [2, 
3]. This phenomenon 
contributes to the power of 
collaborative groups, but it 

poses a threat if a group’s convergence turns into collapse, 
blinding it to new ideas or data contrary to its current 
opinion. 

Such emergence of global features through direct and 
indirect feedback loops among autonomous actors in a 
shared environment is a common feature of stigmergic 
systems [4]. While stigmergy as a “design pattern” is best 
known in systems such as social insect colonies, there are 
many examples of humans coordinating through simple 
interactions in a shared environment to accomplish a 
common goal [5]. Figure 1 illustrates how a shared social 
and information environment couples individuals’ opinion 
formation processes. One individual may select an 
interaction partner (person or information source) based on 
her current opinions. The interaction may change not only 
her opinions, but also the social network relations, affecting 
subsequent interaction decisions by others. 

The objective of our research is to learn how to measure 
cognitive convergence and modulate it by making 
appropriate changes to a group of knowledge workers. We 
and others have studied the dynamics of shared opinions 
using agent-based models. The models developed to date are 
driven solely by the initial opinions of the agents, and social 
connections, if represented at all, form a connected graph 
among all agents. The specific setting that motivates our 
model requires extending such a model in two ways. In many 
government and business settings, a population of analysts is 
responsible for formulating recommendations for policy 
makers. While internal discussions among analysts are an 
important part of their work, they also consult exogenous 

information, in the form of a 
dynamic collection of 
documents. Furthermore, the 
analyst population is divided 
into separate communities, 
within which analysts 
interact preferentially. Each 
community starts with a 
tasking, a document that 
describes the subject that 
they are to explore. 
Exploring the dynamics of 
such a system requires two 
extensions that go beyond 
previous work by ourselves 
and others: interaction of 

 
Figure 1.  Stigmergic feedback between actors and their shared 

environment leads to the emergence of system-level features. 
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disjoint social groups, and the influence of exogenous 
information.  

Section II surveys previous work on opinion dynamics, 
and highlights the new contributions of our research. Section 
III outlines the structure of our model and formal measures 
we use to observe its behavior. Section IV reports 
experiments with the model over the space defined by 
varying levels of group affinity and varying precision in 
retrieval of exogenous information sources, leading to two 
suggestions for modulating convergence among knowledge 
workers. Section V concludes. 

II. PREVIOUS RESEARCH ON OPINION DYNAMICS 

One recent review of computational studies of consensus 
formation [6] traces relevant studies back more than 50 years 
[7], including both analysis and simulation. These studies 
differ in the belief model and the topology, arity, and 
preference of agent interactions.  

An agent’s belief can be either a single variable or a 
vector, with real, binary, or nominal values. Vector models 
can be either independent, in which an agent can hold any 
combination of beliefs concurrently, or correlated, in which 
there is pressure for consistency among an agent’s beliefs.  

Different topologies can constrain interactions. Some 
models constrain interactions by agent location in an 
incomplete graph, usually a lattice (though one study [14] 
considers scale-free networks). In others any agents can 
interact (the “choice” model). 

Interaction arity can allow agents to interact only two at 
a time, or as larger groups. 

The likelihood of agent interaction may be modulated by 
their preference for similar agents. 

Table 1 characterizes several studies in this area in terms 

of these dimensions. Our work extends this field in two 
ways. First, it supports multiple disjoint social networks. 
Second, it provides exogenous influences, in the form of a 
collection of documents that agents can query. These 
extension allows us to model a situation in which groups of 
agents are collectively analyzing information from a 
changing collection of information sources.  

III. AN AGENT-BASED MODEL 

This section describes our model and the metrics we use 
to monitor its dynamics. A wide range of configuration 
parameters are available to configure the initial set-up of a 
scenario (discussed under “model components”) and govern 
the execution cycle (discussed under “model execution”). 
For each model component and execution step, we identify 
the main parameters that our model exposes. 

A. Model Components 
Our model has five main components. 
Topic Space.—Analysts and documents live in an 

abstract Euclidean space constructed from a set of topics. In 
our model, these topics have no semantics, but in the real 
world, a topic is a probability distribution over lexicographic 
terms (e.g., domain-relevant key words), constructed from a 
large collection of relevant documents using techniques such 
as Latent Semantic Analysis (LSA) [15] or Latent Dirichlet 
Allocation (LDA) [16]. The topic space is a hypercube of 
dimensionality equal to the number of topics, with a range of 
[0, 1] on each dimension. A given location in this space is a 
Topic Model Vector (TMV). A theme is a region in topic 
space. We generate analysts or documents associated with a 
theme by sampling a Gaussian with configurable mean and 
variance, resampling when the tails yield a location with a 
coordinate outside of [0, 1]. Relevant parameters are: 

• Number of Topics: Dimensionality of topic space 

• Theme Mean 

• Theme Variance 
Social Network.—We organize analysts into (static) 

groups where members of a group are likely to interact with 
other group members but less likely with members from 
other groups. This group structure models organizational and 
geographical constraints that externally influence the 
likelihood that two analysts interact. Additional internal 
interaction preferences within these constraints arise from 
the preferential selection by analyst interest. Parameters are: 

• Number of Analysts 

• Number of Groups 

• Group Themes 
Document.—A major innovation in our model relative to 

previous work on opinion dynamics is the explicit 
representation of exogenous influences on agent opinions in 
the form of documents. A document is a Topic Model Vector 
(TMV). In the real world, a document’s TMV is discovered 
using topic modeling. Real-world document repositories 
typically contain documents from different sources and with 
different concerns. We model this clumping of documents 
with the notion of a theme, and generate a population of 
documents by sampling from several themes with specified 

TABLE I.  REPRESENTATIVE STUDIES IN OPINION DYNAMICS 

Study Belief Topology Arity Preference? 

Krause [1] 
Real 

variable 
Choice Many Yes 

Sznajd-Weron 

[8] 

Binary 

variable 
Lattice Two No 

Malinchik [9] 
Real 

variable 

Lattice, 

Random, or 

Hierarchy 

Two No 

Deffuant [10] 

Real 

variable 
Choice Two Yes 

Binary 

vector, 

independent 

Choice Two Yes 

Axelrod [11] 

Nominal 

vector, 

independent 

Lattice Two Yes 

Bednar [12] 

Nominal 

vector, 

correlated 

Choice Many No 

Lakkaraju [13] 
Real vector, 

correlated 

Complete, 

Lattice, 

Regular, 

Small-world 

Two No 

Parunak [2] 
Binary 

vector 
Choice Many Yes 

This paper 
Real vector, 

independent 

Arbitrary, 

Unconnected 
Two Yes 



means (locations in topic space) and variances. Real-world 
document repositories are not static, but continually grow as 
new documents are discovered. We model the arrival of new 
information during the runtime of the analyst agents as the 
delayed introduction of documents sampled from a new 
theme. Parameters are: 

• Number of Documents 

• Number of Themes 

• Document Themes (means and variances) 
Analysts.—An analyst’s current interest is also a Topic 

Model Vector (TMV). The tasking given to a community of 
analysts is defined as a theme, and we generate a community 
of analysts working on a given tasking by sampled that 
theme. The central object of our study is the movement of 
the analyst’s TMV through topic space, relative to the TMVs 
representing documents and other analysts. Parameters are: 

• Tasking Themes 

• Number of Analysts 
Document Search.—Real-world analysts use commercial 

or custom search engines to select documents for review. 
Depending on the search engine, queries may have different 
representations (e.g., key words, forms, relation graphs), but 
they always define topics of interest. Our model includes a 
representation of Document Search. An analyst poses a 
query as a subset of topics. The search weights documents by 
the strength of their entries on those topics, and 
probabilistically selects and returns a single document. Noise 
in this selection process models a real-world analyst’s 
willingness to review documents that were not ranked first in 
their search results. Parameters are: 

• Query Temperature 

• Document Selection Temperature 

B. Model Environment 

Our model runs in the OPEN framework, a Java-based 
environment for model configuration, visualization, 

parameter exploration, and data collection. Figure 2 shows a 
visualization of the documents (small circles) and analysts 
(large circles with links indicating the social groupings). In 
this example, we instantiate two themes and two groups. The 
color of the rim of document nodes identifies the theme from 
which they were sampled, and the rim of the analyst nodes 
shows group membership. These colors do not change. The 
color of the inner document/analyst circle is defined by 
aggregating the elements of the entity’s TMV. As analyst 
interest evolves, the color will change in the visualization. 
Document color does not change, since each document is 
static (though the set of documents can change). 

We dynamically determine the drawing location of 
documents and analysts in the visualization through force-
based graph layout. This process does not affect the opinion 
dynamics; it just determines the layout of the nodes in the 
visualization. Each drawing element (here document and 
analyst nodes) is associated with a simple agent that 
continuously updates the element’s location. These updates 
are calculated as the vector sum (in 2D drawing space) of 
attractive and repulsive forces between the agents. We apply 
an exponentially growing repulsive force as two agents 
approach each other. The attractive force between two agents 
decreases with distance and thus acts on elements that are 
already close to each other. We modulate the strength of the 
attraction by the similarity of the agents between which the 
force is computed. That similarity is defined as the distance 
between the agent locations defined by theirTMVs in high-
dimensional topic space. Thus relative node distance on the 
2D screen reflects relative distance in topic space, a form of 
Multi-Dimensional Scaling (MDS). 

C. Model Execution 

First we configure a scenario. Then analysts repeatedly 
execute four steps: choose interaction type, assemble 
interaction options, select interaction target, and execute 
interaction. Analysts execute in random order with 
replacement.  

Configuration.—We instantiate a topic space with a 
specified number of dimensions (10 in the experiments 
reported here), then a specified number of analysts in a 
specified number of groups, each with a tasking theme with 
specified mean and variance, and finally a specified number 
of documents from a specified number of themes, each with 
specified mean and variance. 

Choose Interaction Type.—The analyst chooses 
probabilistically whether to interact with another analyst or 
with a document. On a given step, an analyst interact either 
with a document or with another analyst. The parameter is: 

• Document Query Probability: The probability pD that 
an analyst queries a document in this cycle. With 
probability 1 – pD, it interacts with another analyst. 

Assemble Interaction Options.—If an analyst is 
interacting with a document, all its interaction options 
(possible targets for interaction in this cycle) are documents 
currently in the document space. If the agent is interacting 
with another analyst, all its interaction options are analysts 
from one of the disjoint groups in the social network. The 
agent picks from its own group with probability defined by 

 

Figure 2.  Visualization. 
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its Affinity parameter, and otherwise picks from another 
randomly selected group. The parameter is: 

• Affinity: the probability that an analyst will choose 
to interact with a member of its own group rather 
than an analyst in another group. 

Select Interaction Target.—The analyst agent selects one 
interaction target from the options assembled in the previous 
step. As both document content and analyst interest are 
represented as TMVs, this step is identical for documents 
and analysts. This step by the agent models both the 
analyst’s decision what query to construct based on its 
current interest and what search result to select. In terms of 
social interaction decision, it is the analyst’s choice what 
issues to explore with other analysts and then what person to 
interact with.  

An analyst agent constructs a query by probabilistically 
selecting a subset of topics from its TMV. Guided by a 
model parameter, the agent decides how many topics should 
make up this query. The more topics are in a query, the more 
specific it is. Then, the agent selects as many topics as it 
needs to populate the query. This choice favors topics that 
are currently of high interest to the analyst, but we add a 
temperature noise to that selection. For zero temperature, the 
top-N topics (N is the size of the query in this cycle) of 
interest are chosen. For high temperatures, this choice is 
practically random. Parameters are: 

• Search Topics: Number of topics on which to query 

• Topic Selection Temperature: Amount of 
randomness in topic selection (via Boltzman 
normalization) 

Then an interaction target is selected based on the query. 
In this “Search Execution”, the TMVs of the interaction 
options are sorted by their values in the topics of the query – 
TMVs with higher values rank higher. Thus, we create a 
relevance ranking of the TMVs relative to the given query. 
Based on that ranking, but again with a temperature noise 
parameter, we select one TMV from the top. Here the 
temperature noise models an analyst’s result-selection 
behavior. The parameter is: 

• Search Temperature: Amount of randomness in 
document selection (via Boltzman normalization) 

Execute Interaction.—With the interaction target 
(document or analyst) selected in the previous step, the 
analyst now updates its interest model. If the analyst interacts 
with another analyst, then it samples the Learning Style 
parameter to determine the personality it should assume in 
this interaction, standard or curmudgeon. The selected 
personality sets the update rule for updating each topics 
interest level as a function of the difference in interest on that 
topic between the agent and the selected interaction target. 
Section IV.D explores the form of this rule. In the standard 
personality, the agent shifts its interest level in updated 
topics to be closer to the interest level in the interaction 
target. In the curmudgeon personality, it shifts away from the 
other interest level. Most of our experiments are performed 
with the standard personality. If the interaction target is a 
document, then the agent always uses the standard 
personality. Thus, document content always draws the 
analyst closer to the document. Parameters are: 

• Learning style: probability that agent acts as a 
curmudgeon 

• {Analyst or Document} {Learning or Forgetting} 
Rate: the amount an analyst increases a topic value 
(learning) or reduces it (forgetting) on interaction 
with an analyst or document, respectively. 

D. Performance Metrics 

We define two kinds of metrics: a set of component 
metrics, and a single aggregate metric. 

Component Measures.—The set of topics in a given 
model span a high-dimensional metric space with valid 
locations (TMVs) limited to the [0, 1] interval for each topic. 
As analyst agents update their TMV through interactions 
with other analysts or documents, they move through this 
topic space. We developed metrics that measure aspects of 
the analyst movement to detect dynamic characteristics that 
indicate cognitive collapse. In the following, we specify the 
initial set of measures that apply to a single step (TMV 
update) by an analyst agent. 

The most fundamental measure on the analyst movement 
through topic space is the magnitude of a single TMV 
update, which is the length of the vector between the agent’s 
prior and new location in each cycle. “Encoded” in a step are 
the agent’s choice of the interaction mode (document or 
analyst), the agent’s limitation of the set of possible 
interaction partners (In-Group/Out-of-Group for analyst 
interactions), the emulation of query construction (based on 
current interest = current location) and relevance selection, 
and the application of a “personality” in the actual 
calculation of the TMV update as a function of the agent’s 
location and the location of the interaction target. 

The length of a step in topic space conveys the absolute 
magnitude of the impact a particular interaction had on the 
analyst’s interest. It does not show the nature of the step 
relative to the other analysts. A second measure is the 
distance of the analyst’s location (after the step) to the Center 
of Gravity of all analysts in the model, that is, the mean over 
the TMVs of all analysts regardless of group affiliation. The 
mean TMV may not be near any analyst. Movement of the 
analysts shifts the location of the mean TMV, thus 
successive “distance to mean TMV” measurements, unlike 
“step-length,” are not statistically independent. 

We explored other measures on the step-by-step 
movement of analyst agents, such as the length of the step 
vector projected onto the vector from the agent’s prior 
location to the mean TMV, and the distance between the 
agent’s initial and current locations. We found that the model 
dynamics of interest are sufficiently observable in the first 
two metrics defined above.  

An Aggregate Measure.—All the measures in the 
previous section concern a single step on the part of an 
analyst agent. Initial explorations based on these measures 
show that we also need to discover a directed walk, in which 
an agent’s successive steps are correlated with one another. 
In previous work [17], we applied information-theoretic 
(entropy) measures to detect a directed walk, but 
encountered idiosyncrasies from the specific definition of the 
system states whose probabilities are measured in the 



entropy calculation. For the current research, we developed 
an aggregate metric that measures the “directedness” in an 
agent’s movement through topic space without the 
complications of the entropy calculations discussed in [17]. 
The delayed step length metric adds the step vectors (delta 
TMV) for a single agent over the most recent n cycles 
(configurable, 50 in the results reported here). The vector 

sum of steps of a random walk is on the order of n , 

while the vector sum of steps that generally point in the same 
direction (directed walk) tends to be on the order of n. 

IV. EXPERIMENTS WITH THE MODEL 

We have conducted numerous experiments with this 
model, exploring the space. This section walks through an 
example scenario, exhibits the system’s metastability, 
derives an objective way to measure the cognitive collapse of 
a knowledge community, and uses this measure to explore 
the space defined by community affiliation and precision of 
interaction with exogenous information. Both of these 
dimensions are new to the simulation study of opinion 
dynamics, and our experiments explore only a small portion 
of the space that they define. Nevertheless, our results 
suggest two practical principles for managing convergence 
and preventing collapse among knowledge workers. 

A. A Representative Scenario 

We consider a small scenario with two distinct document 
themes and two groups of analysts. We sample 25 
documents for each theme. One theme is the tasking (sample 
initial interest vector) for all 6 analysts of the first group, and 
the other theme initializes the 5 analysts of the second group. 
The documents and analysts are embedded in a 10-
dimensional topic space. Figure 3 shows the Topic Model 
Vectors (TMVs) for each document and each analyst agent 
in the model. Each row in this visualization is either a 
document (upper half of Figure 3) or an analyst (lower half 
of Figure 3). Each column is one of the topics (here 10) that 
make up the topic space of the model. Thus, a cell in this 
matrix shows the level of interest in (analyst) or relevance 
for (document) a particular topic. We shade the cells dark for 
high topic levels and light for low levels. The two document 
themes (and thus the two document subsets and the two 
analyst groups) are distinctly different, but somewhat 
overlapping in two topics. Figure 4(1) shows the initial 
layout graphically. We clearly see the association of each 
group with a subset of the documents available to all 
analysts. The analysts in the larger group (at the bottom of 

the figure) have higher settings for their affinity parameter 
(more likely to interact within their own group) than those in 
the smaller group. 

The screenshots in Figure 4 illustrate the evolution of the 
model. As the simulation runs, we visualize the recent 
interactions of agents with other agents (red lines) and 
documents (blue lines) fading away into history (line 
transparency). The screen shots in Figure 4 show the 
interactions in the four most recent cycles.  

In #2, the agents of each group that were initially spread 
out in their respective tasking theme converge on their 
common interest and thus form tighter clusters in their 
respective group. While there are also cross-theme/group 
interactions (blue/red lines crossing the gap in the center of 
the view), most interactions occur within the tightly clustered 
groups and their surrounding theme. 

In #3, interactions of low-affinity analysts with the other 
group eventually lead to the defection of two analysts from 
the interest pattern of the smaller group and their transition 
towards the larger group.  

In #4, once the first analyst defects from the smaller, low-
affinity group, others follow rapidly. Eventually, all analysts 
abandon their interest in the upper document theme. 

In #5, both groups of analysts have converged on the 
same set of interests exemplified by the document set in the 
lower part of the screen. Interactions among analysts within a 
group are no different from Out-of-Group interactions. 

 

Figure 3.  Document and analyst TMVs. 

 

Figure 4.  Stages in the evolution of the model in the example scenario. 
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Interactions with documents are (mostly) confined to the 
theme all analysts converged on. 

B. A Metastable Transition 

Our metrics allow us to detect three distinct phases of 
interest evolution dynamics (Figure 5, metrics applied to a 
single analyst from the upper, smaller group). The agents 
from the smaller (upper) group with lower affinity first 
remain in their separate interest area (Phase 1), eventually 
defect one-by-one to the interest of the other group (Phase 
2), and then explore the other interest area jointly with the 
agents from the larger group (Phase 3). The three distinct 
phases in the model dynamics are reflected in the “step 
length” metric and in the “distance to mean TMV” metric. 

Phase 1 is characterized by a large distance to the center 
of gravity of all analysts and a relatively high frequency of 
long steps. The large distance to the mean TMV reflects the 
separation of analysts’ interests in this initial phase into two 
groups, so that the center of gravity of all analysts is far from 
any individual analyst. Individual steps are of three types. 
Short steps (most frequent) are interactions with other 
analysts from the same group (and thus similar interest) or 
documents near the analyst’s initial tasking. Medium length 
steps are interactions with documents from the other theme. 

We set the {Analyst or Document} {Learning or Forgetting} 
Rates so that document interactions have less impact on 
analyst interest than analyst-to-analyst interactions. The 
longest steps, and the least frequent, are interactions with 
analysts from the other group. In Phase 1, the roughly 
constant distance to the mean TMV shows that the agent’s 
successive steps with respect to the center of gravity are 
random (not correlated).  

Phase 2 corresponds to the agent’s defection from the 
region of its original tasking to the region occupied by the 
larger group. The distance to the mean TMV rapidly shrinks. 
The step-length metric shows an increase in the magnitude of 
high-frequency interactions as the agent moves away from 
the documents and analysts in its own group, due to the 
TMV update rule, which computes larger changes for larger 
differences between the analyst’s TMV and the TMV of its 
interaction partner.1 At the same time, the magnitude of the 
lower-frequency steps that correspond to interactions with 
the other document set and out-of-group analysts decreases, 
as the analyst moves closer to those entities. In this phase, 
the agent’s successive steps are correlated, as the rapidly 
falling distance to the mean TMV shows. 

                                                           
1 Section IV.D explores alternative update rules. 

 
Figure 5.  The dynamics of a single analyst from the top group. Both, “step length” (green) and “distance to mean TMV” (blue) display three distinct phases 

that align with the observed convergence of interests among the two groups. 
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Phase 3 is qualitatively similar to Phase 1 in that the 
agent’s successive steps are again uncorrelated. In this phase, 
all analysts of both groups occupy the same region in topic 
space and share a common interest in documents of the 
second document theme. The analysts’ distance to the mean 
TMV is small as they are now all tightly clustered and most 
of the interactions result in only minor changes to an 
analyst’s TMV (small step-length) as they select either 
nearby documents or analysts that are close by regardless 
whether they are inside or outside of the analyst’s group. The 
analysts still interact (infrequently) with documents from the 
other theme (larger steps), but those interactions have no 
lasting effect on the analysts’ relative location to each other. 

Figure 6 shows again the “distance to the mean TMV” 
(blue) for a single analyst as in Figure 5, but compares its 
time series with that of the “delayed step length” metric. As 
expected, a strong peak in the delayed step length 
corresponds to the rapid fall-off in distance to the mean 
TMV (around cycle 2200). Phase 2 in the agent dynamics is 
indeed characterized by a directed walk while Phases 1 and 3 
are (generally) less directed. The delayed step length metric 
is an indicator for Phase-2 dynamics. 

We also note a significant fine-structure in the metric 
leading up to the merger of the analyst with the other group’s 
interest. While this structure invites further investigation, we 
hypothesize the following. The first peak in the metric 
(around cycle 50) corresponds to the initial convergence of 
interests within the analyst’s group, dispatching of the noise 
in the group-member’s probabilistic initialization. 
Subsequent peaks (e.g., near cycles 600, 1500, and 1700), 
corresponding to significant drops in the agent’s distance to 
the mean TMV, are failed “attempts” of the analyst to free 
itself from its group that are thwarted in subsequent 
interactions with its group members and its current document 
theme. Eventually, the agent succeeds in defecting to the 
other group. No such fine-structure was observed in the 
simple gradient climber in [17]. 

C. Defining and Measuring Collapse 

Thus far, we have analyzed cognitive convergence in the 
interest evolution of the analyst agents in the two groups in 
our reference model. The delayed step length metric peaks as 
an agent distinctly reacts to information exposed by the other 
group and the other document theme. We have yet to define 
and detect cognitive collapse. 

We have informally defined “cognitive collapse” as the 
inability of an agent or a group of agents to respond to new 
information. We can now operationalize this definition:  

An agent is in cognitive collapse if it is not in phase-2 
dynamics and if it does not return to phase-2 dynamics 
when qualitatively new information is introduced. 

We introduce qualitatively new information by adding 
new documents to the model at runtime. We add documents 
from a third theme at a time when all agents have fallen into 
Phase-3 dynamics and are cognitively converged. This new 
document theme (located between the two initial themes in 
topic space) probes the analyst dynamics. If analysts in Phase 
3 are collapsed and not just converged, they should not 
respond to new information by returning to Phase 2. In other 
words, the self-reinforcement of interests among the analysts 
should outweigh the “pull” from the new information. 

We detect Phase-2 dynamics using the delayed step 
length metric. An initial visual inspection of this metric with 
(Figure 7, top) and without (Figure 7, bottom) a probe at 
cycle 2500 indicates that new information in the form of new 
documents may result in a return to Phase 2. Since the 
information space is otherwise static in our model, that return 
is short-lived and the agents quickly converge again. 

To facilitate automated exploration of a system’s 
tendency to collapse, we use the nonparametric Mann-
Whitney-U test [18] to compare step lengths before and after 
probe insertion. The baseline configuration used in the 
results reported so far has a document query temperature of 
0.12 and an analyst affinity of 0.4 (location a in Figure 8). 
We explore the region of parameter space that increases 
these parameters up to a query temperature of 0.32 and an 

Figure 6.  Re-plotting Figure 5 with Delayed Step Length reveals a 

strong peak for phase 2. 

 
Figure 7.  Visual inspection of response to new information in the delayed 

step length metric. 
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affinity of 0.9, and run 20 replications at each point. We 
allow each configuration to reach Phase 3, then insert a 
probe, and compute the percentage of analysts who respond 
to the probe, indicating that they are not collapsed. Figure 8 
shows this metric over the parameter space. Increasing the 
query temperature, and thus exposing analysts to unexpected 
documents, dramatically reduces collapse. Surprisingly, the 
likelihood of collapse does not vary systematically as we 
change the affinity of analysts for their own group. 
Practically, if one wishes to modulate the rate of 
convergence among analysts, adding a variable quantity of 
noise to their queries against exogenous information appears 
to be more effective than motivating more or less interaction 
with other teams of analysts. 

D. Exploring the Update Rule 

In our model, the TMV update rule translates the 
difference in TMV elements between an analyst and an 
interaction partner into the length of the analyst’s step 
(toward the partner for an ordinary analyst, and away for a 
curmudgeon). In all experiments reported thus far, the 
magnitude of the change in the interest in a particular topic 
in the TMV is proportional to the difference in that topic 
between the agent and the interaction target. This modeling 
assumption reflects curiosity: an interest very different from 
mine stimulates my interest and has a larger effect on me 
than an interest that is very similar to my own. (Parents of 
college freshmen often observe this principle when their 
children return home at their first college vacation.) An 
alternative model is homophily: I am more likely to move 
toward ideas that are close to my own than toward those that 
are different. Here the magnitude of interest change in the 
agent model would be inversely proportional to the 
difference in interest between the agent and the interaction 
target. In real-world analysts, the correct model is likely to 
be a mixture of these two effects: interests too far from mine 
are threatening, and interests too close to mine are boring, so 
my response will be greatest somewhere in the middle.  

Figure 9 summarizes these options. We parameterize the 
mixture model with s, which indicates the hypothesized 

difference that will lead to maximum movement. When s = 
0, we recover homophily, while s = 1 yields curiosity. 

To explore the effect of the update rule, we focus on two 
observable events in our model: 

a. The convergence of the interests of the two groups 
b. The response to a new-information probe  
We instantiate a large number of systems for each value 

of s and measure the probabilities p(a) of convergence and 
p(b) that the system responds to a probe (or in other words, is 
not collapsed). We hypothesize that as we increase s from 0 
(homophily) to 1 (curiosity), these probabilities will vary 
qualitatively as sketched in Figure 10. At s = 0, homophily 
dominates and strongly limits interest changes of the 
analysts, so we expect convergence of the two groups to be 
unlikely (p(a) ~ 0) and the agents are likely to be collapsed 
within their own groups (p(b) ~ 0). At the other extreme (s = 
1, high curiosity), the agents are highly mobile in topic space 
and thus are likely to converge on a common interest (p(a) ~ 
100%), but we still expect a significant risk for cognitive 
collapse (p(b) < 1) as new information may be “drowned 
out” by the wealth of stimuli already accessible to the agent. 
Intermediate values of s lead to intermediate levels of 
convergence, but with low risk of collapse (p(b) ~ 1). 

Figure 11 shows the results for low affinity and high 
query temperature (b in Figure 8), qualitatively confirming 
our hypothesized curve. We again plot the average over 20 
random seeds for each data point. Low s (homophily) yields 
no interest convergence between the groups but decreasing 
likelihood of collapse (increasing likelihood of non-
collapse). Our hypothesis did not take into account that 
group convergence is a phenomenon with a critical 
threshold. Thus, instead of a gradual rise of the convergence 
probability, the plot remains at 0% until a critical value of s 
is reached. At that point, the probability of all analysts 
converging on the same interest region rapidly increases, but 

 

Figure 8.  Collapse as function of search temperature and analyst affinity 

 

Figure 9.  Alternative models for the TMV update rule g. 
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the analysts remain equally open to new information 
(probability of collapse remains low). Finally, as curiosity 
dominates (large s, the TMV update behavior used in earlier 
examples), the likelihood of collapse begins to rise to the 
20% level observed at Figure 8b. The increase in risk of 
cognitive collapse towards the end of the “sweet spot” sweep 
suggests another practical lesson for real-world knowledge 
workers: a mixed learning strategy that is most sensitive to 
information that is neither completely novel nor entirely 
familiar is less vulnerable to collapse than either extreme.  

Figure 12 shows the corresponding plot for our baseline 
location of low affinity and low query temperature (Figure 
8a). That configuration was tuned to exhibit a high 

probability of cognitive collapse (p(b) is low), so we know 
from the previous sweep that the end-point of our s-curve 
should be more to the left. Indeed we find that the probability 
of event a (x-axis) for large s is only around 50% (note the 
different axes scaling compared to Figure 11). 

In this sweep, volatility in the likelihood of group 
convergence is very high (Figure 13). For large s, we see 
strong fluctuations in the probability of group convergence 
(blue line), even though each data point is the average over 
20 individual runs. As group convergence is a threshold 
phenomenon, where only the defection of the first analyst 
triggers a stampede of the rest of the group, dominating 
curiosity (large s) combined with the other settings of the 
model parameters seems to be taking the model to a phase 
boundary. The specific nature of this system sensitivity to a 
cognitive characteristic of the analysts remains open for 
further exploration. 

 

Figure 10.  Hypothetical Effect of “Sweet Spot” Parameter. 

 
Figure 11.  Sweep over the “sweet spot” parameter s for a configuration 

that shows low probability of collapse at the “Curiosity” extreme (high 

search noise but low affinity, Figure 8b). 

 
Figure 12.  “Sweet spot” sweep for low search noise and low affinity 

(Figure 8a). 

 

Figure 13.  Independent plot of the event probabilities from Figure 12. 
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V. CONCLUSION 

The opinion dynamics of multiple interacting knowledge 
workers are complex, often counter-intuitive, and yet critical 
for much collaborative work in the modern world, and enjoy 
the attention of a significant research community. Previous 
simulation studies focus on the evolution of an initial 
distribution of opinions across agents. While suggestive, 
such studies do not account for two critical features of 
knowledge workers in the real world.  

• Their social environment is highly clustered, and 
they are more likely to interact with another agent in 
their cluster than with an agent in another cluster. 

• Their information environment includes exogenous 
knowledge sources (“documents”) in addition to 
other agents, and they seek out these documents with 
a query process. 

Our new model implements both of these features. The 
resulting system exhibits an interesting metastability that 
allows us to formulate an operational measure of cognitive 
collapse. A preliminary exploration of the parameter space of 
social affinity and query precision with this measure yields 
two (very provisional) practical lessons.  

First, query precision has much more influence on 
collapse than does social affinity. If one wishes to modulate 
the convergence of a community of analysts, managing the 
amount of noise added to their queries is a more promising 
method than changing their group membership.  

Second, motivating analysts to prefer opinions that are 
neither completely new nor completely familiar will lead to 
more robust convergence without collapse than the extremes.  
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