
Software engineering for self-organizing systems

H. VAN DYKE PARUNAK1 and SVEN A. BRUECKNER2

1AxonConnected, 2322 Blue Stone Hills Drive, Suite 20, Harrisonburg, VA 22801;
e-mail: van.parunak@axonconnected.com;
2AxonAI, 2322 Blue Stone Hills Drive, Suite 20, Harrisonburg, VA 22801;
e-mail: sven.brueckner@axonai.com

Abstract

Self-organizing software systems are an increasingly attractive approach to highly distributed, decentralized,
dynamic applications. In some domains (such as the Internet), the interaction of originally independent
systems yields a self-organizing system de facto, and engineers must take these characteristics into
account to manage them. This review surveys current work in this field and outlines its main themes,
identifies challenges for future research, and addresses the continuity between software engineering in
general and techniques appropriate for self-organizing systems.

1 Introduction

A few decades ago, the idea of self-organization was an intriguing option in the design of a computer
application, and its proponents could engage in spirited debate with more classical views of software
structure. Today, in many domains (particularly those based on computer networks), the question is no
longer whether to use self-organization. Real-world open systems with thousands of autonomous com-
ponents do in fact organize themselves, for better or for worse. The challenge before us is to understand
this dynamic and learn how to manage it (Scholtes, 2011).

There is no lack of activity around software systems that in one way or another control themselves
without direct human intervention. In an attempt to focus this review, we find it useful to distinguish three
kinds of systems: autonomous, self-adaptive, and self-organizing. These terms are used with a wide array
of meanings. We offer the following definitions, not to challenge the usage of other researchers, nor to
claim that these are generally accepted, but to clarify and bound our own discussion.

An autonomous system is one that senses and responds to its environment. In software, the concept can
be traced back to Wiener’s work on feedback control systems starting in the 1940s (Watson & Scheidt,
2005). When the agent paradigm began to crystallize in the 1980s and 1990s, the term became common in
the title ‘autonomous agent’. One widely quoted definition of ‘autonomous agent’ (Wooldridge &
Jennings, 1995) explains: ‘Agents operate without the direct intervention of humans or others, and have
some kind of control over their actions and internal state’.

Recently, the term self-adaptive has come into vogue. The name suggests a system that responds to
change without intervention by its creator (thus the ‘self’), but this characteristic is also true of the classic
autonomous system. Definitions of ‘self-adaptive’ often distinguish it from autonomy by emphasizing the
system’s ability to respond to something besides the environment. Here are two examples.

One team defines self-adaptive this way: ‘Self-adaptive systems are capable of dealing with a con-
tinuously changing environment and emerging requirements that may be unknown at design-time’
(emphasis ours; Brun et al., 2009). By this criterion, a system with a single hard-wired goal may be
autonomous (adapting its behavior in the light of environmental changes in order to achieve or maintain
the goal), but to be self-adaptive requires the ability to develop new goals over time, without intervention
of the designer. Architectures that meet this criterion usually have some hierarchical structure of goals, and

The Knowledge Engineering Review, Vol. 30:4, 419–434. © Cambridge University Press, 2015
doi:10.1017/S0269888915000089



the adaptivity happens at lower levels. For example, most biological systems have a fairly immutable goal
of procreation, and their self-adaptivity consists in refining their immediate plans in an effort to achieve
this higher-level goal. In engineered systems, perhaps the most common form of this structure is the
widely-used BDI (Belief-Desire-Intention) agent architecture (Rao & Georgeff, 1991; Haddadi &
Sundermeyer, 1996; Kinny et al., 1996), in which agents select their intentions (changeable, immediate
objectives, on which they act) from among their desires (persistent objectives). In the nature of the case,
the system cannot change its top-level goal by itself. If it could, it would need some criterion to guide that
adaptation, and that criterion would then become the higher-level goal. Any system’s ability to handle
‘emerging requirements that may be unknown at design-time’ is limited by the immutable top-level goal,
which is known at design-time. Ultimately, the system is constrained by its designer, after all.

Another team applies the term ‘self-adaptive’ to ‘systems that are able to adjust their behavior in response
to their perception of the environment and the system itself’ (emphasis ours; Cheng et al., 2009). This
definition requires that the system be self-aware. The definition of ‘self-awareness’ is itself slippery, and the
topic is the focus of a major EU research program (Egan, 2011). Human self-awareness is recursive: we not
only attend to our own state, but we are aware that we attend to our own state, and we are aware that
we attend to our own state, and so forth. We know of no present-day engineered system that aspires to this
kind of recursive awareness. Much work on self-adaptive software requires the system to have an internal
representation of its goals (Heaven et al., 2009), or a model of its own architecture (Nierstraz et al., 2009), or
a set of explicit policies (in case of X, do Y; Georgas & Taylor, 2009; Di Marzo Serugendo et al., 2010), to
guide its adaptation. The system’s awareness is limited to an explicit representation that its designer has
given it, and thus the ‘self’ nature of its awareness is compromised.

In sum, an autonomous system senses and responds to its environment without human intervention.
Such systems are ubiquitous. Systems that claim to be self-adaptive sense and respond to something in
addition to their environment, such as changing requirements or their own state, but in the examples that
currently exist, this response is built in by the designer, qualifying the emphasis on the term ‘self’.
Practically speaking, when we call a system self-adaptive, we imply that the changes with which the
system must cope are unusually large and potentially disruptive, the kind of change that one might expect
would ordinarily require redesign by a human. If we build such a system, we are claiming that it can, by
itself, perform adaptations that in a previous technology generation required human intervention.

The distinction between autonomous and self-adaptive is thus a moving target. Consider, by way of
illustration, the evolution of the automobile. The earliest automobiles required the human to manage all
adaptation with the environment, including setting the spark advance, controlling the mixture of fuel and
air, adjusting the throttle to maintain speed as the slope of the terrain changes, and adjusting speed to
accommodate other vehicles. One by one, these variables have become autonomous, in the order listed
(with the successive invention of the vacuum spark advance, the automatic choke, speed control, and radar
sensing and braking systems). A driver accustomed (say) only to automatic spark advance would consider
a car that could manage its own fuel–air mixture and control its own velocity to be self-adaptive. Modern
drivers think of such a vehicle simply as autonomous. In the domain of vehicle technology, ‘self-adaptive’
now implies capabilities that are on the cutting edge of research, such as platooning, obstacle recognition
and avoidance, and self-routing. A decade from now, these will be considered simply autonomous.

The self-organizing system is a special kind of autonomous system. We emphasize three points
of refinement.

First, as the use of the term ‘organize’ suggests, a self-organizing system consists of multiple compo-
nents that can change their interrelations. A single agent could be autonomous or self-adaptive, but we
would not call it self-organizing. Definitions of self-organization often invoke the notion of disorder or
‘entropy’ across the population of elements (Parunak & Brueckner, 2001; Gershenson & Heylighen,
2003).

Second, we are particularly interested in systems whose response to change does not require centralized
reflection. As we have discussed, the awareness definition of a self-adaptive system is usually realized by
explicit internal representations of aspects of the system, such as goals (Heaven et al., 2009), architecture
(Nierstraz et al., 2009), or policies (Georgas & Taylor, 2009; Di Marzo Serugendo et al., 2010). We are
focused on systems that require neither such explicit representations nor a central module to manage

H . V A N D Y K E P A R U N A K A N D S . A . B R U E C K N E R420



the change in the system in response to disruption. Because of this distinction, a hierarchical feedback
control system, while composed of many different parts, would still be considered autonomous rather than
self-organizing.

Third, to be self-organizing, this decentralized collection of entities must increase or maintain its degree
of organization in the face of change. With other researchers, we measure organization in terms of the
entropy of the population of elements (Parunak & Brueckner, 2001; Gershenson & Heylighen, 2003).
A self-organizing system is one that counters the natural increase of entropy among its members over time.

Our focus in this paper is on self-organizing systems, not just autonomous or self-adaptive ones. While
this distinction is important and useful (Merkle et al., 2007), we will consider some work that does not
completely meet this objective. After all, we are dealing with software engineering, not software science,
and progress often depends on drawing inspiration from many sources (Di Marzo Serugendo et al., 2010;
Weyns et al., 2011).

In Section 2, we review the state of the art in software engineering for self-organizing systems.
Section 3 summarizes some major trends that we see in current practice. Section 4 outlines directions for
future research. Section 5 summarizes how this particular flavor of software engineering relates to the
broader field, and Section 6 concludes.

2 State of the art

In this section, we begin by reviewing some of the immense literature in this field, then survey applications
of self-organizing systems and some of the main mechanisms that they employ.

2.1 Literature

Our focus here is on survey articles or programmatic discussions. Later sections of this review will
consider more specific studies.

While we distinguish self-organization from self-adaptation, we stand on the shoulders of extensive
work in autonomous and self-adaptive software. The classic notion of a feedback control loop can be
traced back to the 19th century (Maxwell, 1867), and it was natural for the idea to be applied to computer
programs, largely under the inspiration of Norbert Wiener (1948). The flavor of adaptive control in robotic
and manufacturing systems was captured in NIST’s Real-time Control System reference architecture
(Albus (1992, 1997)). Later, IBM’s Autonomic Computing Initiative (Kephart & Chase, 2003; IBM,
2006) sought to apply these techniques to purely informational systems.

Autonomous systems are the focus of much robotic research, and application concerns have led to
recent efforts to define a scale of autonomy (Huang et al., 2005) and develop methods to test a system’s
autonomy (ITEA, 2010).

Self-adaptive software has been the object of two recent seminars at Schloss Dagstuhl (Cheng et al.,
2009; de Lemos et al., 2012), and a special issue of the Journal of Systems and Software is in preparation
on this topic (Weyns, 2011). The topic is the object of a careful review article (Salehie & Tahvildari, 2009),
whose approach (focusing on the functions of monitoring, detecting, deciding, and acting) very clearly
captures the reflective nature of self-adaptation as opposed to self-organization.

The design and control of self-organizing software per se was the focus of four editions of the ESOA
(Engineering Self-Organising Applications) workshop (Di Marzo Serugendo et al., 2004; Brueckner et al.,
2005, 2006, 2007). It is treated in Gershenson’s (2007) recent dissertation, and a wide range of shorter
studies will be identified in later sections of this review. The areas of self-adaptive and self-organizing
systems (SASO)together are the focus of the ongoing IEEE International Conferences on Self-Adaptive
and Self-Organizing Systems (SASO, 2011)1.

1 Not all studies that take the name ‘self-organizing’ satisfy our definition of the field as distinct from ‘self-
adaptation’. We would class some of the work reported in venues devoted to ‘self-organizing software’ as in fact only
self-adaptive.

Software engineering for self-organizing systems 421



2.2 Applications

Self-organization has been applied to a wide range of problems. As noted in the introduction, self-
organization is unavoidable in distributed systems, especially open ones, such as networks (Bonabeau
et al., 1998; Heusse et al., 1998; Holzer et al., 2008; Scholtes, 2011) and water distribution (Dötsch et al.,
2010), and highly desirable in managing large numbers of robots (Sauter et al., 2005, 2009; Glad et al.,
2008, 2009, 2010) and in agile manufacturing settings (Brueckner, 2000; Peeters et al., 2001; Valckenaers
et al., 2003), where it competes with hierarchical control systems, including holonic schemes (Van Brussel
et al., 1998; Valckenaers & Van Brussel, 2005) that we would consider self-adaptive but not self-
organizing. In purely informational settings, self-organization has been used to coordinate multiple the-
orem provers (Denzinger & Fuchs, 1999), to enable documents to organize themselves (Parunak et al.,
2006) and find likely users (Brueckner et al., 2008), and to reassign tasks among agents (Odell et al., 2003;
Cicirello & Smith, 2004). Mechanisms inspired by wasps and termites have been demonstrated for
self-organized construction of physical systems (Werfel, 2006).

2.3 Mechanisms

A wide range of instances of self-organization in nature have been isolated and characterized to the point
that they can be applied in artificial systems (Parunak, 1997; Bonabeau et al., 1999; Camazine et al.,
2001). These derive mostly from social animals: pheromone systems (Payton et al., 2001; Peeters et al.,
2001; Sauter et al., 2007; Kasinger et al., 2009; Viroli & Casadei, 2009; Viroli & Zambonelli, 2010),
stimulus-based load balancing (Werfel, 2006), insect clustering (Kuntz & Layzell, 1997; Monmarché, 1999;
Handl et al., 2003; Walsham, 2003; Hamdi et al., 2010), firefly synchronization (Tyrrell et al., 2007). But
markets (Clearwater, 1996; Parunak et al., 1999) and physical systems such as potential fields (Masoud &
Masoud, 2000; Flacher & Sigaud 2002; Mamei & Zambonelli, 2005; Weyns et al., 2008; Simonin et al.,
2011) have also been invoked. While these mechanisms can be characterized in terms of feedback control, in
their natural settings they are highly decentralized and do not rely on explicit models of the structure, goals, or
policies of the overall system, thus qualifying as self-organizing and not just self-adaptive.

2.4 Reflection on the state of the art

While self-organizing solutions have been widely explored, they tend to have two limiting characteristics
(Weyns, 2011). First, most applications demonstrate the capabilities of a single mechanism, and do not
consider the potential interaction of a toolkit of mechanisms. Second, among software engineers there is
relatively little work on the theoretical foundations of these mechanisms. We will return to these themes
when we outline directions for future work.

3 Outline of main trends

Several general trends are apparent from this brief and highly selective review: decentralization, openness,
imitation of nature, and reliance on simulation. These topics are empirical, not analytic: they represent our
subjective impression of dominant themes, and we do not claim that they constitute a formal basis that
spans the space of self-organizing systems. These characteristics reflect our definition of ‘self-organization’,
and they are common enough in practice to justify focusing on systems that exhibit them.

3.1 Decentralization

Since we distinguish self-organization from self-adaptation partly by the multi-component decentralized
nature of the former, decentralization is not unexpected, but we can gain understanding by analyzing it
more closely.

Decentralization is not a black-or-white dichotomy. It is useful to distinguish three levels, and in a
highly populous system with heterogeneous members, one can imagine gradations and combinations
along this spectrum.

H . V A N D Y K E P A R U N A K A N D S . A . B R U E C K N E R422



At one extreme, and outside our purview, are centralized systems, in which all decisions are made at a
single location. We include here not only monolithic systems, but also hierarchical feedback control
systems (Albus, 1992). Holonic systems were originally motivated by emergent dynamics over a hierarchy
that defines scale rather than control (Koestler, 1967), but engineered holonic applications often look very
much like hierarchical control (Ricketts, 1996; Bongaerts, 1998; Van Brussel et al., 1998). We can view
such systems as centralizing two kinds of information: declarative information about the current state of
the system, and imperative information that determines next steps. (In terms of the BDI agent architecture,
these kinds of information are the agent’s beliefs and intentions, respectively.)

At the other extreme are systems in which each entity interacts only with those in its local vicinity. Its
neighborhood defines its view of the state of the world (declarative information, or beliefs), and it can only
act within that narrow purview (imperative information, or intentions).

We have defined the endpoints in terms of local vs. global interaction, involving two kinds of infor-
mation (declarative and imperative). Two other, intermediate combinations of these categories are
possible.

It is quite common to collect the state of the system (declarative information) centrally, then make it
available to all components, which take action locally. This approach, exemplified by the blackboard
architecture (Nii, 1986a, 1986b) and its derivative mediator architecture (Shen & Norrie, 1997), is efficient
for small systems, but encounters scaling problems as the size of the system increases.

In principle, one could imagine an inverse structure, choosing actions centrally and forcing agents
to execute them, without the benefit of central knowledge of the system state. Because of the scaling
problems of maintaining a complete, timely, centralized snapshot of the full system state, attempts to
centralize both state and action often approximate this scheme. Because the centralized action decisions
cannot take into account the local realities of the environment, the outcome of those actions is often
disappointing.

In some cases, one can detect movement along this cline. For example, Denzinger et al. (1997) began
working with multiple interacting theorem provers in a centralized setting, but then revised the system to
use global information but only local decisions (Denzinger & Fuchs, 1999). In recent work in other
domains, their design has moved to a distribution of both declarative and imperative information (Dötsch
et al., 2010). A motivation for this movement is the increasing need for real-time response (Denzinger
et al., 2011), which can be hindered if multiple layers of hierarchy need to be queried to make a decision
(Weyns et al., 2012).

In some domains, yet another approach to the question of centralization and decentralization is
possible2. Sometimes there is a (domain-specific) relationship between (declarative) beliefs and
(imperative) decisions. That is, certain information may be relevant only to certain decisions, and
vice-versa. If the partitioning of information lends itself to a topological structure within which neighbor
relations may be defined, one can localize both kinds of information, so that each process maintains state
and makes decisions within its specialty, while interacting with neighbors when necessary. (If interaction
with other belief-decision clusters is never necessary, attributing such a system to a single domain is of
questionable value).

Complete localization of interaction does have a weakness: it limits look-ahead. ‘It only functions
acceptably when the (recent) past is representative for the (near) future’ (Valckenaers, 2011). Predictive
mechanisms have been proposed to address this problem (Cheng et al., 2009). A particularly interesting
approach uses a second-level self-organizing system to make these predictions through a model of
the world in which interactions are spatially local but are allowed to evolve faster-than-real-time into the
future (Parunak et al., 2007; Holvoet et al., 2010). Mathematically, this approach is captured by the Monte
Carlo tree search approach to learning Markov transition probabilities (Kearns et al., 1999; Kocsis &
Szepesvári, 2006).

Market systems represent an interesting segment of the centralized–decentralized spectrum. Classical
Walrasian markets depend on posting bids centrally so that agents can make local decisions (Clearwater,
1996), thus embodying our midpoint of global declarative information and local imperative information.

2 We are grateful to an anonymous reviewer for this insight.

Software engineering for self-organizing systems 423



However, an alternative form of market, Edgeworth barter (Axtell & Epstein, 1997), allows agents to
interact pairwise, and still guarantees global convergence. This form of market is completely distributed,
and has been applied to problems of distributed constraint optimization (Parunak et al., 1999).

3.2 Openness

In building a self-organizing system from the ground up, one can impose homogeneity on the elements.
However, the kinds of self-organization that are being imposed on us (say, through the internet) force us to
deal with systems whose elements do not conform to a single blueprint.

Openness greatly increases the complexity of a system. Any single element needs to be prepared to
interact with everything outside of its own boundary. These candidates for interaction now include not
only other elements that are like itself, but also technical, geographic, political, social and economic
realities (Di Marzo Serugendo, 2009; Scholtes, 2011). Because we cannot predict all of these influences in
advance, the line between the preparation of the system (its specification, design, implementation, and
testing) and its operation is greatly blurred, a distinction to which we shall return.

In a closed system, entities can be designed to interact directly with each other. The need to cope with
an open system has led researchers to focus on a common framework or infrastructure. Any agent that can
interact with this infrastructure can be included in the system. At the most primitive level, the physical
world is the infrastructure, and agents must have physical sensors and actuators to deal with it, an approach
exploited in the axiom that ‘the world is its own best model’ (Brooks, 1991). In the natural world, animals
sometimes use the physical world to hold arbitrary markers (for instance, insect pheromones), which is one
form of stigmergy (Grassé, 1959)3. Disembodied agents require a computational framework to hold such
markers, such as a smart sensor network or RFID chips, and a major line of research (Mamei & Zambonelli,
2005; aliCE, 2008; Viroli & Omicini, 2011) is focused on designing such frameworks and their component
mechanisms (Omicini & Zambonelli, 1999; Omicini, 2002; Omicini et al., 2004; Viroli et al., 2007).

The framework approach to openness imposes a ‘lowest-common denominator’ on all interacting
components. There is a trade-off between the simplicity of the common interface to the framework and the
range of entities that can interact. A very simple interface supports the widest range of entities, but also
limits the amount of information that the entities can exchange (Valckenaers, 2011). For example, a market
is a framework that permits open interaction among a wide range of economic actors by reducing all
considerations to a single scalar, price, discarding much detailed information along the way. This con-
sideration has led to the development of relatively sophisticated interaction languages, such as tuple spaces
(Lejter & Dean, 1996; Casadei et al., 2009) and highly structured symbolic ‘pheromones’ (Peeters et al.,
2001).

Openness has implications for the security of a system, in two opposing directions. On the one hand, the
more open a system is, the fewer restrictions are imposed on an element that seeks to participate in it, and
the easier it is for malicious elements to insert themselves into the system’s operation. On the other hand,
the more decentralized and localized a system’s decisions are, the harder it will be for a malicious element
to understand and manipulate the overall state of the system. Roughly, open systems are easier to infiltrate
than closed ones, but tend to limit the extent of damage that can be done. Thus, engineering of self-
organizing systems needs to draw extensively on work on cyber-security and trust (T3 Group, 2012).

3.3 Imitation of nature

We have already observed (Section 2.3) that mechanisms for self-organizing systems tend to be drawn
from nature, and in particular from biological systems. This tendency can be traced directly to the problem
of openness, which organisms must confront in order to survive. The more sophisticated the organism, the
more structure it can impose on its own environment, and the less open that environment becomes to other
entities. A parade example is the set of rich linguistic mechanisms that humans use to coordinate with one
another. Computational mechanisms modeled on human consciousness and linguistic interaction are the

3 In the other major form, sematectonic stigmergy, agents coordinate, not through arbitrary markers, but through
functional changes to the structures that are the object of their coordination.

H . V A N D Y K E P A R U N A K A N D S . A . B R U E C K N E R424



holy grail of AI research, but still beyond our grasp. Artificial versions of cognition have been described as
autistic (Valckenaers, 2011) and schizophrenic (Sengers, 1999; Höning, 2011), ‘idiot savants’ with
focused capability but lacking adaptability. This realization may lie behind the preference for simpler
insect models in self-organizing software (Valckenaers, 2011), though in fact humans often use the same
kind of simple mechanisms that insects do (Parunak, 2006).

3.4 Simulation

Simulation, rather than formal analysis, plays a prominent role in the engineering of most current self-
organizing systems (De Wolf et al., 2005). The complexity of these systems makes the development of
formal models difficult (Höning, 2011). In fact, a set of even very simple agents interacting with one
another has the computational power of a Turing machine (Edmonds & Bryson, 2004), or perhaps even
more (Wegner, 1997), and by Rice’s theorem (Rice, 1953), any non-trivial feature of such a system is
formally undecidable.

Some proponents of simulation argue that a simulation, being a computer program, is a partial recursive
function, and thus refuse to recognize any distinction between simulation and formal analysis (Epstein,
2006) such as that in the previous paragraph is invalid. The distinction we are making is not one of formal
structure, but of insight. A computer program such as a simulation of a self-organizing system, while every
bit as formal as a proof, has a very different structure. Most program structures are algorithmic: first do X,
then do Y, and then do Z4. Such a structure does not lend itself to determining properties such as whether
the system will halt, how rapidly it converges, how thoroughly it explores the space of possible behaviors,
and whether its equilibria are stable or unstable. In general, such characterizations are unattainable
(Edmonds & Bryson, 2004). Thus, it is likely that the engineering of self-organizing software will continue
to rely heavily on simulation. However, as with many formal results, there are special cases where formal
methods can support the engineering of self-organizing systems, as we shall see in the next section.

4 Challenges for future research

The themes of current systems highlight a number of opportunities for future research. These opportunities
are not unexplored, but represent the cutting edge of current work in this field. We consider first the
problem of composing more complex systems, then the challenge of characterizing and controlling an
existing system, and finally the objective of understanding self-organizing systems formally.

4.1 System composition

In Section 2.4, we observed that most current applications focus on a single mechanism or phenomenon.
Weyns (2010) demonstrates the integration of multiple mechanisms in an industrial application, but such
hybrid approaches are the exception rather than the rule. Beal suggests that ‘the composition of phe-
nomena into a larger complex system is rather understudied’ (Beal, 2011), and identifies three areas that
must be pursued.

First, self-organizing phenomena must be reduced to primitives with well-characterized properties and
interfaces. The idea of method fragments (Puviani et al., 2011) is to decompose an approach into frag-
ments using SPEM (Software & Systems Process Engineering Metamodel; OMG, 2008) as the underlying
formalism, so that they can be reused and combined with each other. A small but growing circle of activity
in defining self-organization mechanisms as software design patterns (De Wolf & Holvoet, 2007; Gardelli
et al., 2007; Kasinger et al., 2009; Holvoet et al., 2010) is also a step in this direction.

Second, we need means of composition that allow self-organizing phenomena to be combined
with predictable results. Current efforts that emphasize the centrality of frameworks (aliCE, 2008) and
architectures (Weyns, 2010) are seeking to address this problem, but the need for ‘predictable results’
awaits advances in formal analysis (Section 4.3).

4 Declarative languages are an exception, and represent an important research topic.

Software engineering for self-organizing systems 425



Third, we need means of abstraction that allow details of a complex self-organizing system to be hidden
when engineering or analyzing larger subunits. This characteristic, identified by Simon as critical to
artificial systems (Simon, 1969), also requires a depth of formal insight that is not yet at hand.

The imitation of nature that is so common in identifying individual mechanisms for self-organization
holds promise here as well, if we shift our focus from the individual organisms or species to the level of the
ecosystem (Kephart et al., 1989; Brueckner, 2000; Janssen, 2002; Viroli & Zambonelli, 2010; Beal, 2011;
SAPERE, 2011). In natural ecosystems, individual organisms interact in different ways, including
amensalism, competition, antagonism, commensalism, and competition. For example, in a mutualistic
relation such as pollination, insects and plants benefit one another by exchanging products or services.
Tools such as service-oriented architectures (Brazier et al., 2009) can enable software entities to discover
one another and dynamically compose themselves into larger systems on the basis of mutually beneficial
interactions.

4.2 System characterization and control

People build systems to perform some task, and need to be able to characterize their behavior and
control them.

At design time, we need to understand a range of trade-offs that self-organizing mechanisms impose.
These include (Denzinger et al., 2011) locality vs. optimality, optimality vs. flexibility, scalability vs.
efficiency, efficiency vs. centralization, centralization vs. decentralization, exploration vs. exploitation,
and greediness vs. purposefulness. (All of these trade-offs presume that we have well-defined measures of
each property, itself a major research challenge). Depending on the requirements of the application, certain
regions of each of these scales may qualify as faulty behavior, and techniques of safety engineering can be
adopted to identify and avoid them (Di Marzo Serugendo, 2009).

As the system is operating, we need ways to characterize its behavior. Observing and analyzing the
series of events that it generates is one way to gain this insight (Hudson et al., 2010). One important
challenge in this task is that while the nature of the system’s behavior as acceptable or unacceptable
manifests at the system level, our self-organizing agenda requires us to focus on locally observable
phenomena. Information theoretic measures such as the entropy over agent options (Brueckner & Parunak,
2003) or over signals passing between agents (Holzer et al., 2008; Höning & La Poutre, 2010) have proven
a promising local window into global system behavior.

Like behavior characterization, behavior control is difficult in a decentralized setting, and is not widely
explored (Weyns, 2011). A system of local constraints with attributes defined over component interfaces
(Georgiadis et al., 2002) is one promising way forward. Another is to deploy a control swarm in parallel
with the functioning swarm (Merkle et al., 2007). In some cases centralization may be unavoidable, and a
fruitful avenue of exploration is how to combine centralized control where necessary with local control
most of the time (Di Marzo Serugendo et al., 2010).

An important current area of research that promises to contribute to system characterization and control
is work on normative MAS (Boella et al., 2007), particularly mechanisms for the emergence and main-
tenance of norms (Villatoro, 2011). Results in this area offer the prospect of a system that develops its own
characterization that it can then report to its stakeholders.

4.3 Formal analysis of self-organizing systems

Attempts to gain a formal purchase on self-organizing systems usually involve one or more of three critical
dimensions: a vertical dimension (emergence) that relates lower-level and higher-level behaviors, a hor-
izontal dimension (organization) that relates entities to one another within a single level, and a temporal
dimension (dynamics) that explores how the system develops through time. To see the distinction among
these dimensions, consider a stream of automobiles traveling down a highway. The vertical dimension
describes how the behaviors of the components in an individual automobile join to produce the behavior of
the overall automobile, or (at the next level) how the interactions of individual automobiles yield system-
level features such as net throughput of the traffic system. The horizontal dimension includes the rules of

H . V A N D Y K E P A R U N A K A N D S . A . B R U E C K N E R426



the road that regulate the interactions of automobiles with each other. The temporal dimension describes
changes in the system over time, including the transition from fluid flow to a traffic jam, or the periodic
variations in traffic density depending on time of day.

4.3.1 Emergence
Perhaps the most widely recognized phenomenon in dealing with self-organizing systems is emergence
(De Wolf & Holvoet, 2005), which we define (Parunak & Brueckner, 2004) as system-level behavior that
is not explicitly specified in the individual components. Emergence is a feature of the vertical dimension,
describing the relation between the behavior of components and that of the entire system. Abstracted from
software, the problem has a long history, forming the central focus of statistical mechanics, which seeks to
relate the observed characteristics of materials at human scale to the interactions of atoms and molecules.
This perspective allows the application of concepts such as entropy (Parunak & Brueckner, 2001; Guerin
& Kunkle, 2004; Holzer et al., 2008; Scholtes, 2010), phase shifts (Savit et al., 2002; Brueckner &
Parunak, 2005; Scholtes et al., 2008), master equations (Bonabeau, 2002; Lerman et al., 2005), and
universality (Parunak et al., 2004) to multi-agent systems. There are further insights to be gained from this
approach. For example, the renormalization group (Binney et al., 1992) has the potential to illuminate
discontinuities in the behavior of a self-organizing system. By considering the system as it approaches
certain limits (e.g. low agent density and high number of agents, allowing the use of a gas model, as in
Bachrach et al. (2010)), we can place bounds on system characteristics of interest, offering ‘thermo-
dynamic guarantees’ (Scholtes, 2011) of system behavior.

The mapping from micro to macro behaviors is not symmetrical. To derive the macro behavior from the
micro, we run simulations, or (in the appropriate limits) apply techniques from statistical mechanics, and
these techniques are useful in system verification. Earlier in the design process, given a specified macro
behavior, we need to find micro behaviors that will yield it. The best approach to this problem that we
know consists of various forms of generate and test, such as synthetic evolution, which has been applied
successfully to define local agent behaviors satisfying a macro specification (Sauter et al., 2002; Booker,
2003). This approach requires a system architecture whose representation lends itself to such evolutionary
search, one whose structure remains valid under genetic operators such as mutation and crossover.

An interesting facet of the vertical problem is the level at which goals are satisfied. Individually selfish
agents may not yield good results at the group level. We need to develop ways to define and achieve
‘group-selfish behavior’ (Valckenaers, 2011), in which the system as a whole pursues objectives that may
not be optimal from the point of view of the components. Insights into this objective may come from
biology. The notion of the gene, rather than the individual, as the focus of natural selection Dawkins
(1976) can be viewed as a process for favoring a well-defined group of agents (those agents possessing the
gene) as opposed to individuals.

4.3.2 Organization
The horizontal dimension explores how constraints on which agents can interact affect the behavior of the
whole system. Patterns of interactions among agents at the same level are naturally represented as a graph,
a class of mathematical object that is amenable to a variety of formal tools (Newman, 2010). For example,
useful definitions of autonomy and emergence can be formalized in terms of entropy on signals over the
edges in the interaction graph (Holzer et al., 2008), and usability can be defined in terms of similar
measures on edges connecting the system to users (Höning & La Poutre, 2010). It has been suggested
(Scholtes, 2010) that the Laplacian spectrum of a network, which captures aspects of the graph’s modular
and hierarchical structures, may facilitate formalization of the relation between these structures and
dynamical processes such as distributed consensus, decentralized coordination and information dis-
semination (Scholtes, 2011).

4.3.3 Temporal
Self-organization is a process that takes place through time, and an adequate formalization of self-
organizing systems must support reasoning about the temporal dimension. In many cases, systems need to

Software engineering for self-organizing systems 427



predict their own behavior in order to adapt appropriately (Parunak et al., 2007; Cheng et al., 2009;
Holvoet et al., 2010; Valckenaers, 2011), but the nonlinear nature of component interactions means that
trajectories diverge over time, leading to a prediction horizon (Parunak et al., 2008) beyond which any
prediction is essentially random. Estimating this horizon is critical to scoping the predictive activity of a
system, and quantifying the uncertainty that is inevitable in a self-organizing system (Scholtes, 2011).

One approach to formalizing the temporal dimension is to define formal languages to specify system
development (Beal, 2010a). At this point, one may legitimately invoke Epstein’s (2006) insistence on the
formal nature of any computer program, since higher-level primitives nominated by a programming
language do offer a useful abstraction that can give insight to the behavior of the system programmed in
the language. There are a number of examples that could inspire further work in this area, including
languages modeling gene network development (Doursat, 2006), term-rewriting systems modeling plant
growth (Prusinkiewicz & Lindenmayer, 1990) and their generalization in MGS (Spicher &Michel, 2006),
Coore’s (1999) Growing Point Language for interconnect topologies, Nagpal’s (2001) Origami Shape
Language, Werfel’s (2006) system for distributed adaptive structure generation, and Beal’s (2010b) Proto
system for spatial computing.

5 Relation to conventional (software) engineering

Engineering of self-organizing systems has drawn much from the engineering of conventional software.
In this section, we highlight some of the points of continuity and contrast.

Let’s begin with engineering in general. We have already noted the inappropriateness of the feedback
control metaphor for a decentralized approach to self-organization. Nevertheless, the engineering of
physical systems has a great deal to teach us. One example is how one handles noise. Engineering of
physical systems, unlike conventional software engineering, devotes much attention to modeling and
quantifying noise in the interfaces between components. Traditional software engineering assumes that
noise (i.e. errors) can be eliminated, while other disciplines recognize that it is unavoidable and seek to
damp it or provide for graceful degradation (Beal & Knight Jr, 2008; Beal, 2011). Another example is the
adaptation of methods for safety engineering to increasing the robustness and dependability of self-
organizing software (Di Marzo Serugendo, 2009).

The notion of an architecture is a powerful way to engage the challenge of system composition and
openness, providing a framework for algorithms and identify complementarities and system-level issues
(Weyns, 2010, 2011). Research on frameworks to provide interaction environments for components
(aliCE, 2008; Viroli & Omicini, 2011) is a way to instantiate insights from an architectural approach.

There has been a historical shift in system analysis away from functional analysis and toward object-
oriented system decomposition. Self-organizing systems benefit from this shift: system functions are usually
distributed over many components, and even if some group of components specializes to support a function,
that association happens dynamically, rather than being specified in the design (Valckenaers, 2011).

The notion of design patterns provides a useful way to abstract individual self-organizing mechanisms
so that they can subsequently be recombined in novel ways (Simonin et al., 2011). The approach has been
applied to a number of mechanisms, including market-based control (De Wolf & Holvoet, 2007), gradient
fields (De Wolf & Holvoet 2007; Kasinger et al. 2009), predictive swarms (Parunak et al., 2007; Weyns
et al., 2012), replication, collective sort, evaporation, aggregation, and diffusion (Gardelli et al., 2007).
It is instructive to observe that the last three patterns are sub-components of a pheromone approach to
constructing gradient fields, highlighting both the value of this approach and the need for further
development.

Closely related to this work is the application of SPEM (OMG, 2008) to facilitate the isolation and
integration of method fragments (Puviani et al., 2011), illustrated by isolating fragments from Adelfe,
CUP, MetaSelf, General Methodology, and SDA, and then recombining them using PASSI.

Finally, engineers of self-organizing systems can take advantage of recent advances in iterative and
incremental development (Larman & Basili, 2003; Beal, 2011). It is impossible to anticipate in advance
the states accessible to a self-organizing system as it evolves in an open environment. As a result, the line
between development and operation inevitably blurs (Baresi et al., 2010). The system must be specified in

H . V A N D Y K E P A R U N A K A N D S . A . B R U E C K N E R428



terms of desired performance and means of incrementally correcting deficiencies (Beal, 2010b), leading to
systems that grow and react rather than being constructed and controlled (Scholtes, 2010). The need for
this perspective is particularly strong in the verification and validation (V&V) of a system. Traditionally,
successful completion of V&V is necessary before a system is deployed. Self-organizing systems require
mechanisms for ‘run-time V&V’ (Becker et al., 2010) that can continuously monitor the system’s per-
formance as it reorganizes itself in response to unanticipated conditions. It is an open question whether
run-time V&V can in fact be done in a fully decentralized manner, or whether some reference to an explicit
model of system objectives is necessary. That is, a system can be engineered to organize itself to meet
system objectives without carrying a model of those objectives, but it may be the case that it cannot report
whether or not it is in fact meeting the objectives unless it has such a model, since the latter task is
intrinsically reflective.

6 Conclusion

The engineering of self-organizing software is a challenging domain that has attracted a wide range of
creative talent. In spite of the difficulty of the problem and the wide range of approaches, there are
consistent themes and well-defined problems to focus future research. As the information universe
becomes more distributed and decentralized, the difference between the engineering of self-organizing
systems and that of other software will shrink, and the themes that are beginning to manifest themselves
in the self-organizing community will be increasingly recognized as staples of software engineering
in general.

Acknowledgments

This review relies heavily on many colleagues who were kind enough to share their observations on the
field, and their own work, with us (alphabetically by last name: Bernhard Bauer, Jake Beal, Olivier Buffet,
François Charpillet, Jörg Denzinger, Giovanna Di Marzo Serugendo, Regina Frei, Kurt Geihs, Arnaud
Glad, Nicolas Höning, Holger Kasinger, Andrea Omicini, Ingo Scholtes, Olivier Simonin, Paul Valck-
enaers, Mirko Viroli, and Danny Weyns). The authors particularly appreciate the detailed reviews of the
field that several respondents contributed (Beal, 2011; Denzinger et al., 2011; Höning, 2011; Scholtes,
2011; Simonin et al., 2011; Valckenaers, 2011; Viroli & Omicini, 2011; Weyns et al., 2011). Even though
these reviews are not publicly available, we have borrowed extensively from their ideas and in some cases
their wording, and have cited them in order to give appropriate credit. Naturally, we are responsible for
how we have combined the ideas that they have so generously shared with us. Think of this exercise as an
example of an ‘open system’, in which the components, in this case the contributions of our informants, are
allowed to interact in ways that they perhaps did not anticipate. We provide the ‘infrastructure’ for the
interaction, and as is often the case in self-organizing systems, the infrastructure makes a great deal of
difference in the overall outcome. In selecting the studies that we cite, we draw heavily on the suggestions
of our informants, so our citations should be understood as examples and make no claim to be exhaustive.

References

Albus, J. S. 1992. RCS: a reference model architecture for intelligent control. IEEE Computer 25(5), 56–59.
Albus, J. S. 1997. The NIST real-time control system (RCS): an approach to intelligent systems research. Journal of

Experimental and Theoretical Artificial Intelligence 9(2–3), 157–174.
aliCE 2008. aliCE (agents, languages and infrastructures for complexity engineering) Home. http://alice.

unibo.it/xwiki/bin/view/aliCE/.
Axtell, R. & Epstein, J. 1997. Distributed Computation of Economic Equilibria via Bilateral Exchange. Technical

report, Brookings Institution.
Bachrach, J., Beal, J. & McLurkin, J. 2010. Composable continuous space programs for robotic swarms. Neural

Computing and Applications 19(6), 825–847.
Baresi, L., Bencomo, N., Cukic, B., Gorla, A., Inverardi, P., Nier-strasz, O., Park, S., Smith, D., Vogel, T., de Lemos, R. &

Andersson, J. 2010. Dagstuhl Group c: Process. http://www.dagstuhl.de/Materials/Files/
10/10431/10431.SWM12.Slides.ppt.

Software engineering for self-organizing systems 429

http://alice.unibo.it/xwiki/bin/view/aliCE/
http://alice.unibo.it/xwiki/bin/view/aliCE/
http://www.dagstuhl.de/Materials/Files/10�/�10431/10431.SWM12.Slides.ppt
http://www.dagstuhl.de/Materials/Files/10�/�10431/10431.SWM12.Slides.ppt


Beal, J. 2010a. Functional blueprints: an approach to modularity in grown systems. In Proceedings of the Seventh
International Conference on Swarm Intelligence (ANTS 2010).

Beal, J. 2010b. Mit Proto. http://stpg.csail.mit.edu/proto.html.
Beal, J. 2011. Software engineering for self-organizing systems. Personal Communication.
Beal, J. & Knight, T. F. Jr 2008. Analyzing composability in a sparse encoding model of memorization

and association. In Proceedings of the Seventh IEEE International Conference on Development and Learning
(ICDL 2008).

Becker, B., Karsai, G., Mankovskii, S., Muoller, H., Pezze, M., Schaofer, W., Sousa, J. P., Tahvildari, L., Tamura, G.,
Villegas, N. M. & Wong, K. 2010. Dagstuhl Group a: Towards Practical Run-Time V&V (for self-adaptive systems).
http://www.dagstuhl.de/Materials/Files/10/10431/10431.SWM10.Slides.ppt.

Binney, J. J., Dowrick, N. J., Fisher, A. J. & Newman, M. E. J. 1992. The Theory of Critical Phenomena—An
Introduction to the Renormalization Group. Clarendon Press.

Boella, G., Torre, L. v. d. & Verhagen, H. 2007. Dagstuhl Seminar Proceedings 07122: Normative Multi-agent
Systems. LZI Host.

Bonabeau, E. 2002. Agent-based modeling: methods and techniques for simulating human systems. Proceedings of
the National Academy of Sciences 99(Suppl 3), 7280–7287.

Bonabeau, E., Dorigo, M. & Theraulaz, G. 1999. Swarm Intelligence: From Natural to Artificial Systems (SFI Studies
in the Sciences of Complexity). Oxford University Press.

Bonabeau, E., Henaux, F., Guerin, S., Snyers, D., Kuntz, P. & Theraulaz, G. 1998. Routing in telecommunications
networks with “smart” ant-like agents. In Proceedings of the Second International Workshop on Intelligent Agents
for Telecommunications Applications (IATA98), Lecture Notes in AI, 1437, 60–71. Springer.

Bongaerts, L. 1998. Integration of Scheduling and Control in Holonic Manufacturing Systems. PhD thesis, PMA.
Booker, L. 2003. Learning tactics for swarming entities. In Swarming: Network Enabled C4ISR, Inbody, D., Chartier,

C., DiPippa, D. & McDonald, B. (eds), 40–48. ASD C3I.
Brazier, F. M. T., Kephart, J. O., Parunak, H.V.D. & Huhns, M. N. 2009. Agents and service-oriented computing for

autonomic computing: a research agenda. IEEE Internet Computing 13, 82–87.
Brooks, R. A. 1991. Intelligence without representation. Artificial Intelligence 47, 139–159.
Brueckner, S. 2000. Return from the Ant: Synthetic Ecosystems for Manufacturing Control. Dr.rer.nat.thesis.
Brueckner, S., Downs, E., Hilscher, R. & Yinger, A. 2008. Self-organizing integration of competing reasoners for

information matching. In ECOSOA Workshop at SASO 2008.
Brueckner, S., Hassas, S., Jelasity, M. & Yamins, D. 2007. Engineering Self-Organising Systems. Lecture Notes in AI

3910. Springer.
Brueckner, S. & Parunak, H. V. D. 2003. Resource-aware exploration of emergent dynamics of simulated systems. In

Autonomous Agents andMulti-Agent Systems (AAMAS 2003), Rosenschein, J. S., Wooldridge, M., Sandholm, T. &
Yokoo, M. (eds), ACM, 781–788.

Brueckner, S. & Parunak, H. V. D. 2005. Information-driven phase changes in multi-agent coordination. InWorkshop
on Engineering Self-Organizing Systems (ESOA, at AAMAS 2005), Lecture Notes in AI 3464, Brueckner, S. A.,
Di Marzo Serugendo, G., Karageorgos, A. & Nagpal, R. (eds). Springer.

Brueckner, S. A., Di Marzo Serugendo, G. & Hales, D. 2006. Engineering Self-Organising Systems. Lecture Notes in
AI 3910. Springer.

Brueckner, S. A., Di Marzo Serugendo, G., Karageorgos, A. & Nagpal, R. 2005. Engineering Self-Organising
Systems. Lecture Notes in Computer Science. Springer.

Brun, Y., Di Marzo Serugendo, G., Gqacek, C., Giese, H., Kienle, H., Litoiu, M., Mller, H., Pezz, M. & Shaw, M.
2009. Engineering self-adaptive systems through feedback loops. In Software Engineering for Self-Adaptive
Systems, Cheng, B. H. C., de Lemos, R., Giese, H., Inverardi, P. & Magee, J. (eds), 5525 Springer,
128–145.

Camazine, S., Deneubourg, J.-L., Franks, N. R., Sneyd, J., Theraulaz, G. & Bonabeau, E. 2001. Self-Organization in
Biological Systems. Princeton University Press.

Casadei, M., Viroli, M. & Gardelli, L. 2009. On the collective sort problem for distributed tuple spaces. Science of
Computer Programming 74(9), 702–722.

Cheng, S.-W., Poladian, V. V., Garlan, D. & Schmerl, B. 2009. Improving architecture-based self-adaptation through
resource prediction. In Software Engineering for Self-Adaptive Systems, Cheng, B. H. C., de Lemos, R., Giese, H.,
Inverardi, P. & Magee, J. (eds), 5525, Springer, 128–145.

Cicirello, V. A. & Smith, S. F. 2004. Wasp-like agents for distributed factory coordination. Journal of Autonomous
Agents and Multi-Agent Systems 8, 237–266.

Clearwater, S. H. 1996. Market-Based Control: A Paradigm for Distributed Resource Allocation. World Scientific.
Coore, D. 1999. Botanical Computing: A Developmental Approach to Generating Interconnect Topologies on an

Amorphous Computer. PhD thesis.
Dawkins, R. 1976. The Selfish Gene. Oxford University Press.
de Lemos, R., Giese, H., Muoller, H. & Shaw, M. 2012. Software Engineering for Self-Adaptive Systems II, Lecture

Notes in Computer Science 7475. Springer.

H . V A N D Y K E P A R U N A K A N D S . A . B R U E C K N E R430

http://stpg.csail.mit.edu/proto.html
http://www.dagstuhl.de/Materials/Files/10�/�10431/10431.SWM10.Slides.ppt


De Wolf, T. & Holvoet, T. 2005. Towards a methodology for engineering self-organising emergent systems. In The
2005 Conference on Self-Organization and Autonomic Informatics, Czap, H., Unland, R., Branki, C. & Tianfield,
H. (eds), 18–34. IOS Press.

De Wolf, T. & Holvoet, T. 2007. Design patterns for decentralised coordination in self-organising emergent systems.
In The Fourth International Workshop on Engineering Self-Organising Applications (ESOA) at AAMAS 2006,
Brueckner, S., Hassas, S., Jelasity, M. and Yamins, D. (eds), LNAI 4335, 28–49. Springer.

De Wolf, T., Holvoet, T. & Samaey, G. 2005. Engineering self-organising emergent systems with
simulation-based scientific analysis. In The Fourth International Workshop on Engineering Self-Organising
Applications, 146–160.

Denzinger, J. & Fuchs, D. 1999. Cooperation of heterogeneous provers. In The 16th International Joint Conference on
Artificial Intelligence (IJCAI 1999), Dean, T. (ed.), 1, 10–15. Morgan Kaufmann.

Denzinger, J., Fuchs, M. & Fuchs, M. 1997. High performance ATP systems by combining several AI methods. In
IJCAI-97, Pollack, M.E. (ed.), 102–107. Morgan Kaufmann.

Denzinger, J., Kasinger, H. & Bauer, B. 2011. Software engineering for self-organizing systems. Personal Communication.
Di Marzo Serugendo, G. 2009. Robustness and dependability of self-organising systems—a safety engineering

perspective. In The 11th International Symposium on Stabilization, Safety and Security of Distributed Systems
(SSS 2009), Guerraoui, R. and Petit, F. (eds), LNCS 5873, 254–268. Springer.

Di Marzo Serugendo, G., Fitzgerald, J. & Romanovsky, A. 2010. Metaself—an architecture and development method
for dependable self-* systems. In The 25th Symposium on Applied Computing (SAC 2010).

Di Marzo Serugendo, G., Karageorgos, A., Rana, O. F. & Zambonelli, F. 2004. Engineering Self-Organising Systems,
Lecture Notes in AI 2977. Springer.

Dötsch, F., Denzinger, J., Kasinger, H. & Bauer, B. 2010. Decentralized real-time control of water distribution
networks using self-organizing multi-agent systems. In The 4th IEEE International Conference on Self-Adaptive
and Self-Organizing Systems (SASO 2010), Gupta, I., Hassas, S. & Rolia, J. (eds), 223–232. IEEE.

Doursat, R. 2006. The growing canvas of biological development: multiscale pattern generation on an
expanding lattice of gene regulatory networks. InterJournal: Complex Systems, http://www.inter
journal.org.

Edmonds, B. & Bryson, J. J. 2004. The insufficiency of formal design methods: the necessity of an experimental
approach for the understanding and control of complex MAS. In The 3rd International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2004), Jennings, N. R., Tambe, M., Sierra, C. &
Sonenberg, L. (eds), 938–945. IEEE.

Egan, C. 2011. Awareness: self-awareness in autonomic systems. http://www. aware-project.eu/.
Epstein, J. M. 2006. Generative Social Science, Princeton Studies in Complexity. Princeton University Press.
Flacher, F. & Sigaud, O. 2002. Spatial coordination through social potential fields and genetic algorithms. In The

Seventh International Conference on Simulation of Adaptive Behavior (From Animals to Animats), Hallam, B.,
Floreano, D., Hallam, J., Meyer, J.-A. & Hayes, G. (eds), MIT Press.

Gardelli, L., Viroli, M. & Omicini, A. 2007. Design patterns for self-organizing multiagent systems. In The 5th
International Central and Eastern European Conference on Multi-Agent Systems (CEEMAS 2007), Hans-Dieter, B.,
Gabriela, L., Rineke, V., & Lszl Zsolt, V. (eds), LNCS 4696, 123–132. Springer.

Georgas, J. C. & Taylor, R. N. 2009. Policy-based architectural adaptation management: robotics domain case studies.
In Software Engineering for Self-Adaptive Systems, Cheng, B. H. C., de Lemos, R., Giese, H., Inverardi, P. &
Magee, J. (eds), 5525 Springer, 89–108.

Georgiadis, I., Magee, J. & Kramer, J. 2002. Self-organising software architectures for distributed systems.
In The First Workshop on Self-healing Systems (WOSS '02), Garlan, D., Kramer, J. & Wolf, A. (eds). ACM.

Gershenson, C. 2007. Design and Control of Self-organizing Systems. PhD thesis.
Gershenson, C. & Heylighen, F. 2003. When Can We Call a System Self-Organizing? http://arxiv.org/

pdf/nlin.AO/0303020.
Glad, A., Buffet, O., Simonin, O. & Charpillet, F. 2009. Self-organization of patrolling-ant algorithms. In The

International Conference on Self-Adaptive and Self-Organizing Systems (SASO09), 61–70.
Glad, A., Buffet, O., Simonin, O. & Charpillet, F. 2010. Influence of different execution models on patrolling ant

behaviors: from agents to robots. In The Ninth International Conference on Autonomous Agents and Multiagent
Systems (AAMAS’10), 1173–1180.

Glad, A., Simonin, O., Buffet, O. & Charpillet, F. 2008. Theoretical study of ant-based algorithms for multi-agent
patrolling. In The Eighteenth European Conference on Artificial Intelligence (ECAI’08), 626–630.

Grassé, P.-P. 1959. La reconstruction du nid et les coordinations inter-individuelles chez bellicositermes natalensis et
cubitermes sp. la theorie de la stigmergie: essai d’interpretation du comportement des termites constructeurs.
Insectes Sociaux 6, 41–84.

Guerin, S. & Kunkle, D. 2004. Emergence of constraint in self-organizing systems. Nonlinear Dynamics, Psychology,
and Life Sciences 8(2), 131–146.

Haddadi, A. & Sundermeyer, K. 1996. Belief-desire-intention agent architectures. In Foundations of Distributed
Artificial Intelligence, O’Hare, G. M. P. & Jennings, N. R. (eds). John Wiley, 169–185.

Software engineering for self-organizing systems 431

http://www.interjournal.org
http://www.interjournal.org
http://arxiv.org/pdf/nlin.AO/0303020
http://arxiv.org/pdf/nlin.AO/0303020


Hamdi, A., Antoine, V., Monmarché, N., Alimi, A. & Slimane, M. 2010. Artificial ants for automatic classification. In
Artificial Ants: From Collective Intelligence to Real-life Optimization and Beyond, Monmarch, N., Guinand, F. &
Siarry, P. (eds). John Wiley and Sons, 265–290.

Handl, J., Knowles, J. & Dorigo, M. 2003. Ant-Based Clustering: A Comparative Study of its Relative Performance
with Respect to k-means, Average Link and 1d-som. Technical Report TR-IRIDIA-2003-24, IRIDIA.

Heaven, W., Sykes, D., Magee, J. & Kramer, J. 2009. A case study in goal-driven architectural adaptation. In Software
Engineering for Self-Adaptive Systems, Cheng, B. H. C., de Lemos, R., Giese, H., Inverardi, P. & Magee, J. (eds),
5525 Springer, 109–127.

Heusse, M., Guerin, S., Snyers, D. & Kuntz, P. 1998. Adaptive agent-driven routing and load balancing in commu-
nication networks. Advances in Complex Systems 1, 234–257.

Holvoet, T., Weyns, D. & Valckenaers, P. 2010. Delegate MAS patterns for large-scale distributed coordination and
control applications. In EuroPlop.

Holzer, R., de Meer, H. & Bettstetter, C. 2008. On autonomy and emergence in self-organizing systems. In Intern.
Workshop on Self-Organizing Systems (IWSOS), LNCS 5343. Springer.

Höning, N. 2011. Comments on Software Engineering for Self-Organizing Systems. Personal Communication.
Höning, N. & La Poutre, H. 2010. Designing comprehensible self-organising systems. In The Fourth IEEE Interna-

tional Conference on Self-Adaptive and Self-Organizing Systems (SASO 2010), 233–242. IEEE Computer Society.
Huang, H.-M., Pavek, K., Novak, B., Albus, J. & Messina, E. 2005. A framework for autonomy levels for unmanned

systems (ALFUS). In AUVSI Unmanned Systems 2005.
Hudson, J., Denzinger, J., Kasinger, H. & Bauer, B. 2010. Efficiency testing of self-adapting systems by learning of

event sequences. In The 2nd International Conference on Adaptive and Self-adaptive Systems and Applications
(ADAPTIVE 2010), 200–205. IARIA.

IBM 2006. An architectural blueprint for autonomic computing. Technical report, IBM.
ITEA 2010. Agenda. In The Developing And Testing Autonomy (DATA) Workshop. International Test and Evaluation

Association (ITEA).
Janssen, M. A. 2002. Complexity and Ecosystem Management: The Theory and Practice of Multi-Agent Systems.

Edward Elgar.
Kasinger, H., Bauer, B. & Denzinger, J. 2009. Design pattern for self-organizing emergent systems based on digital

infochemicals. In EASe 2009, 45–55.
Kearns, M., Mansour, Y. & Ng, A. 1999. A sparse sampling algorithm for near-optimal planning in large markov

decision processes. In The Sixteenth International Joint Conference on Artificial Intelligence, 1324–1331. Morgan
Kaufmann.

Kephart, J. O. & Chase, D. M. 2003. The vision of autonomic computing. Computer 36(1), 41–50.
Kephart, J. O., Hogg, T. & Huberman, B. A. 1989. Dynamics of computational ecosystems. Physics Review 40A,

404–421.
Kinny, D., Georgeff, M. & Rao, A. 1996. A methodology and modelling technique for systems of BDI agents. In Agents

Breaking Away. 7th EuropeanWorkshop onModelling Autonomous Agents in a Multi-Agent World (MAAMAW’96),
Walter Vande, V. & John, W. P. (eds), Lecture Notes in Artificial Intelligence 1038, 56–71. Springer.

Kocsis, L. & Szepesvári, C. 2006. Bandit basedMonte-Carlo planning. In The EMCL 2006, Fiirnkranz, J., Scheffer, T.
& Spiliopoulou, M. (eds), LNCS 4212. Springer, 282–293.

Koestler, A. 1967. The Ghost in the Machine. Penguin Group.
Kuntz, P. & Layzell, P. 1997. An ant clustering algorithm applied to partitioning in VLSI technology. In Fourth

European Conference on Artificial Life, Husbands, P. and Harvey, I. (eds), 417–424. MIT Press.
Larman, C. & Basili, V. 2003. Iterative and incremental development: a brief history. IEEE Computer 36(36), 2–11.
Lejter, M. & Dean, T. 1996. A framework for the development of multiagent architectures. IEEE Expert 11, 47–59.
Lerman, K.,Martinoli, A.&Galstyan, A. 2005. A review of probabilistic macroscopicmodels for swarm robotic systems.

In Swarm Robotics Workshop: State-of-the-art Survey, Sahin, E. & Spears, W. (eds). Springer-Verlag, 143–152.
Mamei, M. & Zambonelli, F. 2005. Field-Based Coordination for Pervasive Multiagent Systems. Springer.
Masoud, S. A. & Masoud, A. A. 2000. Constrained motion control using vector potential fields. IEEE Trans. on

Systems, Man, and Cybernetics 30(3), 251–272.
Maxwell, J. C. 1867. On governors. Proceedings of the Royal Society of London 16, 270–283.
Merkle, D., Middendorf, M. & Scheidler, A. 2007. Swarm controlled emergence—designing an anti-clustering

ant system. In IEEE Swarm Intelligence Symposium, 242–249.
Monmarché, N. 1999. On data clustering with artificial ants. In AAAI-99 & GECCO-99 Workshop on Data Mining

with Evolutionary Algorithms: Research Directions, Freitas, A. A. (eds), 23–26. AAAI.
Nagpal, R. 2001. Programmable Self-Assembly: Constructing Global Shape using Biologically-inspired Local

Interactions and Origami Mathematics. PhD thesis.
Newman, M. E. J. 2010. Networks: An Introduction. Oxford University Press.
Nierstraz, O., Denker, M. & Renggli, L. 2009. Model-centric, context-aware software adaptation. In Software

Engineering for Self-Adaptive Systems, Cheng, B. H. C., de Lemos, R., Giese, H., Inverardi, P. & Magee, J. (eds),
5525, Springer, 128–145.

H . V A N D Y K E P A R U N A K A N D S . A . B R U E C K N E R432



Nii, H. P. 1986a. Blackboard systems. AI Magazine 7(3), 40–53.
Nii, H. P. 1986b. Blackboard systems. AI Magazine 7(4), 82–107.
Odell, J. J., Van Dyke Parunak, H., Brueckner, S. & Sauter, J. 2003. Temporal aspects of dynamic role

assignment. InWorkshop on Agent-Oriented Software Engineering (AOSE03) at AAMAS03, LNAI 2935, 201–213.
Springer.

OMG 2008. Software & Systems Process Engineering Meta-Model Specification. Technical report, Object Management
Group. http://www.omg.org/spec/SPEM/2.0/PDF.

Omicini, A. 2002. Towards a notion of agent coordination context. In Process Coordination and Ubiquitous
Computing, Marinescu, D. & Lee, C. (eds). CRC Press, 187–200.

Omicini, A., Ricci, A., Viroli, M., Castelfranchi, C. & Tummolini, L. 2004. Coordination artifacts: environment-based
coordination for intelligent agents. In 3rd International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2004), Jennings, N. R., Tambe, M., Sierra, C. & Sonenberg, L. (eds), 1, 286–293. ACM.

Omicini, A. & Zambonelli, F. 1999. Coordination for internet application development. Autonomous Agents and
Multi-Agent Systems 23(3), 251–269.

Parunak, H. V. D. 1997. ‘go to the ant’: engineering principles from natural agent systems. Annals of Operations
Research 75, 69–101.

Parunak, H. V. D. 2006. A survey of environments and mechanisms for human-human stigmergy. In Proceedings of
E4MAS 2005,Weyns, D., Michel, F. & Van Dyke Parunak, H. (eds), LNAI 3830, Lecture Notes on AI, 163–186.
Springer.

Parunak, H. V. D., Belding, T. C. & Brueckner, S. A. 2008. Prediction horizons in agent models. In Engineering
Environment-Mediated Multiagent Systems (Satellite Conference at ECCS 2007), Weyns, D., Brueckner, S. &
Demazeau, Y. (eds), LNCS 5049, 88–102. Springer.

Parunak, H. V. D. & Brueckner, S. 2001. Entropy and self-organization in multi-agent systems. In The Fifth
International Conference on Autonomous Agents (Agents 2001), André, E., Sen, S., Frasson, C. & Müller, J. P.
(eds), 124–130. ACM.

Parunak, H. V. D., Brueckner, S. & Savit, R. 2004. Universality in multi-agent systems. In Third International Joint
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2004), 930–937. ACM.

Parunak, H. V. D., Brueckner, S., Weyns, D., Holvoet, T. & Valckenaers, P. 2007. E pluribus unum: Polyagent and
delegate mas architectures. In Eighth International Workshop on Multi-Agent-Based Simulation (MABS07),
Lecture Notes in AI 5003, 36–51. Springer.

Parunak, H. V. D. & Brueckner, S. A. 2004. Engineering swarming systems. In Methodologies and Software
Engineering for Agent Systems, Bergenti, F., Gleizes, M.-P. & Zambonelli, F. (eds). Kluwer, 341–376.

Parunak, H. V. D., Rohwer, R., Belding, T. C. & Brueckner, S. 2006. Dynamic decentralized any-time hierarchical
clustering. In Proceedings of the Fourth International Workshop on Engineering Self-Organizing Systems
(ESOA’06), LNAI 4335. Springer.

Parunak, H. V. D., Ward, A. C., Fleischer, M. & Sauter, J. A. 1999. The RAPPID project: symbiosis between industrial
requirements and mas research. Journal ofAutonomous Agents and Multi-Agent Systems 2(2), 111–140.

Payton, D., Daily, M., Estowski, R., Howard, M. & Lee, C. 2001. Pheromone robotics. Journal Autonomous Robots
11(3), 319–324.

Peeters, P., Van Brussel, H., Valckenaers, P., Wyns, J., Bongaerts, L., Kollingbaum, M. & Heikkila, T. 2001.
Pheromone based emergent shop floor control system for flexible flow shops. Artificial Intelligence in Engineering
15, 343–352.

Prusinkiewicz, P. & Lindenmayer, A. 1990. The Algorithmic Beauty of Plants. Springer.
Puviani, M., Di Marzo Serugendo, G., Frei, R. & Cabri, G. 2011. A method fragments approach to methodologies for

engineering self-organising systems. ACM Transactions on Autonomous and Adaptive Systems 7(3), 1–25.
Rao, A. S. & Georgeff, M. P. 1991. Modeling rational agents within a BDI architecture. In International Conference

on Principles of Knowledge Representation and Reasoning (KR-91), Allen, J., Fikes, F., & Sandwall, E. (eds),
473–484. Morgan Kaufman.

Rice, H. G. 1953. Classes of recursively enumerable sets and their decision problems. Transactions of the American
Mathematical Society 74, 358–366.

Ricketts, S. 1996. Holonic manufacturing systems.
Salehie, M. & Tahvildari, L. 2009. Self-adaptive software: landscape and research challenges. ACM Transactions on

Autonomic and Autonomic Systems (TAAS) 4(2), 1–42.
SAPERE 2011. Eu SAPERE Project (Self-Aware Pervasive Service Ecosystems). http://www.sapere-

project.eu/.
SASO 2011. Self-adaptive and Self-Organizing Systems. http://www.saso-conference.org/.
Sauter, J. A., Matthews, R., Parunak, H. V. D. & Brueckner, S. 2002. Evolving adaptive pheromone path planning

mechanisms. In Autonomous Agents and Multi-Agent Systems (AAMAS02). ACM, 434–440.
Sauter, J. A., Matthews, R., Parunak, H. V. D. & Brueckner, S. A. 2005. Performance of digital pheromones for

swarming vehicle control. In Fourth International Joint Conference on Autonomous Agents and Multi-Agent
Systems, Pechoucek, M., Steiner, D. & Thompson, S. (eds), 903–910. ACM.

Software engineering for self-organizing systems 433

http://www.omg.org/spec/SPEM/2.0/PDF
http://www.sapere-project.eu/
http://www.sapere-project.eu/
http://www.saso-conference.org/


Sauter, J. A., Matthews, R., Parunak, H. V. D. & Brueckner, S. A. 2007. Effectiveness of digital pheromones controlling
swarming vehicles in military scenarios. Journal of Aerospace Computing, Information, and Communication 4(5),
753–769.

Sauter, J. A., Matthews, R. S., Robinson, J. S., Moody, J. & Riddle, S. P. 2009. Swarming unmanned air and ground
systems for surveillance and base protection. In AIAA Infotech@Aerospace 2009 Conference. AIAA.

Savit, R., Brueckner, S. A., Parunak, H. V. D. & Sauter, J. 2002. Phase structure of resource allocation games. Physics
Letters A 311, 359–364.

Scholtes, I. 2010. Harnessing Complex Structures and Collective Dynamics in Large Networked Computing Systems.
PhD thesis.

Scholtes, I. 2011. Thoughts on Engineering Self-Organizing Systems. Personal Communication.
Scholtes, I., Botev, J., Hohfeld, A., Schloss, H. & Esch, M. 2008. Awareness-driven phase transitions in very large

scale distributed systems. In The Second IEEE International Conferences on Self-Adaptive and Self-Organizing
Systems (SASO), Brueckner, S. A., Robertson, P. & Bellur, U. (eds). IEEE.

Sengers, P. 1999. Designing comprehensible agents. In Sixteenth International Joint Conference on Artificial Intel-
ligence (IJCAI), Dean, T. (ed.), 1227–1232. Lawrence Erlbaum.

Shen, W. & Norrie, D. 1997. Facilitators, mediators or autonomous agents. In Second International Workshop on
CSCW in Design, Siriruchatapong, P., Zongkai, L. and Barthes, J. P. (eds), 119–124. International Academic
Pubilshers, Beijing.

Simon, H. A. 1969. The Sciences of the Artificial. MIT Press.
Simonin, O., Charpillet, F., Buffet, O.&Glad, A. 2011. Engineering Self-Organizing Systems. Personal Communication.
Spicher, A. & Michel, O. 2006. Declarative modeling of a neurulation-like process. BioSystems 87, 281–288.
T3 Group 2012. T3 Group: Trust Theory Technology. http://t3.istc.cnr.it/trustwiki/index.

php/Main_Page.
Tyrrell, A., Auer, G. & Bettstetter, C. 2007. Biologically inspired synchronization for wireless networks. In Advances

in Biologically Inspired Information Systems: Models, Methods, and Tools, Dressler, F. & Carreras, I. (eds),
Studies in Computational Intelligence. Springer, 47–62.

Valckenaers, P. 2011. Self-Organizing Systems with Emergent Behavior. Personal Communication.
Valckenaers, P. & Van Brussel, H. 2005. Holonic manufacturing execution systems. CIRP Annals of Manufacturing

Technology 54(1), 427–432.
Valckenaers, P., Van Brussel, H., Hadeli, K., Bochmann, O., Germain, B. S. & Zamfirescu, C. 2003. On the design of

emergent systems: an investigation of integration and interoperability issues. Engineering Applications of Artificial
Intelligence 16, 377–393.

Van Brussel, H., Wyns, J., Valckenaers, P., Bongaerts, L. & Peeters, P. 1998. Reference architecture for holonic
manufacturing systems: prosa. Computers In Industry 37(3), 255–276.

Villatoro, D. 2011. Social Norms for Self-policing Multi-agent Systems and Virtual Societies. PhD thesis.
Viroli, M. & Casadei, M. 2009. Biochemical tuple spaces for self-organising coordination. In Coordination

Languages and Models, Field, J. & Vasconcelos, V. T. (ed.), 5521, Springer, 143–162.
Viroli, M. & Omicini, A. 2011. The “self-organising coordination” Paradigm in the Software Engineering of SOS.

Technical report, Universita di Bologna.
Viroli, M., Ricci, A., Zambonelli, F., Holvoet, T. & Schelfthout, K. 2007. Infrastructures for the environment of

multiagent systems. Journal of Autonomous Agents and Multi-Agent Systems 14(1), 49–60.
Viroli, M. & Zambonelli, F. 2010. A biochemical approach to adaptive service ecosystems. Information Sciences

180(10), 1876–1892.
Walsham, B. 2003. Simplified and Optimised Ant Sort for Complex Problems: Document Classification. Bachelor of

Software Engineering thesis.
Watson, D. P. & Scheidt, D. H. 2005. Autonomous systems. Johns Hopkins APL Technical Digest 26(4), 368–375.
Wegner, P. 1997. Why interaction is more powerful than algorithms. Communications ofthe ACM 40, 81–91.
Werfel, J. 2006. Anthills Built to Order: Automating Construction with Artificial Swarms. PhD thesis.
Weyns, D 2010. Architecture-Based Design of Multi-Agent Systems. Springer.
Weyns, D. 2011. Software engineering for self-organizing systems. Personal Communication.
Weyns, D., Boucke, N. & Holvoet, T. 2008. A field-based versus a protocol-based approach for adaptive task

assignment. Journal on Autonomous Agents and Multi-Agent Systems 17(2), 288–319.
Weyns, D., Malek, S., Andersson, J. & Schmerl, B. 2011. Call for Papers, Special Issue on “state of the art in self-

adaptive software systems”, Journal of Systems and Software (jss). http://www.elsevierscitech.
com/cfp/CFP-JSS-special-issue-2010.pdf.

Weyns, D., Schmerl, B., Grassi, V., Malek, S., Mirandola, R., Prehofer, C., Wuttke, J., Andersson, J., Giese, H. &
Goschka, K. 2012. On patterns for decentralized control in self-adaptive systems. In Software Engineering for Self-
Adaptive Systems II, de Lemos, R., Giese, H., Müller, H. & Shaw, M. (eds), LNCS 7475, pp. 76–107. Springer.

Wiener, N. 1948. Cybernetics. MIT Press.
Wooldridge, M. & Jennings, N. R. 1995. Agent theories, architectures, and languages: a survey. In Intelligent Agents,

Wooldridge, M. & Jennings, N. R. (eds). Springer, 1–22.

H . V A N D Y K E P A R U N A K A N D S . A . B R U E C K N E R434

http://t3.istc.�cnr.it/trustwiki/index.php/Main_Page
http://t3.istc.�cnr.it/trustwiki/index.php/Main_Page
http://www.elsevierscitech.com/cfp/CFP-JSS-special-issue-2010.pdf
http://www.elsevierscitech.com/cfp/CFP-JSS-special-issue-2010.pdf

	Software engineering for self-organizing systems
	1Introduction
	2State of the art
	2.1Literature
	2.2Applications
	2.3Mechanisms
	2.4Reflection on the state of the art

	3Outline of main trends
	3.1Decentralization
	3.2Openness
	3.3Imitation of nature
	3.4Simulation

	4Challenges for future research
	4.1System composition
	4.2System characterization and control
	4.3Formal analysis of self-organizing systems
	4.3.1Emergence
	4.3.2Organization
	4.3.3Temporal


	5Relation to conventional (software) engineering
	6Conclusion
	Acknowledgments
	ACKNOWLEDGEMENTS
	References


