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Abstract
This paper proposes that an appropriately configured multi-agent system (MAS) is for-
mally equivalent to a graphical causal model (GCM, a broad category that includes many 
formalisms expressed as directed graphs), and offers benefits over other GCMs in mod-
eling a social scenario. MASs often use GCMs to support their operation, but are not usu-
ally viewed as tools for enhancing their execution. We argue that the definition of a GCM 
should include its update mechanism, an often-overlooked component. We review a wide 
range of GCMs to validate this definition and point out limitations that they face when 
applied to the social and psychological dimensions of causality. Then we describe Social 
Causality using Agents with Multiple Perspectives (SCAMP), a causal language and multi-
agent simulator that satisfies our definition and overcomes the limitations of other GCMs 
for social simulation.

Keywords  Stigmergy · Causal modeling · Agent-based modeling · Social simulation

1  Introduction

This paper makes two claims. 

1.	 A stigmergic multi-agent system (MAS) with an appropriate environment has the same 
mathematical structure as a graphical causal model (GCM).

2.	 Such an MAS has advantages over other GCMs for modeling social causality.

“Graphical causal models” include reasoning systems, such as Bayes nets, POMDPs, fuzzy 
cognitive maps, Petri Nets, and causal loop diagrams, based on directed graphs. MASs 
often use GCMs, but are not usually viewed as instances of such models. We offer a defini-
tion of such models in Sect. 2, supported by an extensive review in Sect. 3 and Appendix 1.

Claim 1 asserts that a stigmergic MAS can satisfy this definition. This claim arises from 
our experience with such an MAS, Social Causality using Agents with Multiple Perspec-
tives (SCAMP), for a major experiment in social science. Section  4 describes SCAMP, 
aligning it with our definition to validate Claim 1.
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Once we recognize an appropriately configured MAS as a GCM, we can compare it 
with other GCMs to substantiate Claim 2. This claim allows the agent community to con-
tribute in a new way to the causal modeling community. Section 7.1 discusses this claim, 
as well as summarizing the evidence for Claim 1.

We1 developed SCAMP as part of the DARPA Ground Truth program to generate data 
from synthetic societies with known underlying causal structure (as discussed in [50]). 
Teams of social scientists then used this data to evaluate methods of causal discovery.

SCAMP exploits a wide range of techniques that the author and previous colleagues2 
developed in stigmergic MASs, in which agents coordinate their activity by making and 
sensing changes in a shared environment. The environments in these systems included not 
only spatial lattices [49], where stigmergy is widely used in robotics, but also hierarchical 
task networks [46] and directed graphs of events [48]. The last of these satisfies our defini-
tion for the structural component of a GCM (Sect. 2). In developing this model we con-
trasted it with more conventional GCMs such as Bayes networks, but did not recognize the 
deeper points of similarity. Those insights, developed in this paper, became clear only as 
we integrated these techniques into a production-strength social simulator and presented its 
data to social scientists in response to causally-oriented questions in the DARPA Ground 
Truth program. Briefly, and as we explain in more detail in Section 4:

–	 Every GCM includes not only a directed graph, but also a mechanism that updates val-
ues on the nodes of the graph.

–	 If such a graph is the environment in a stigmergic system, the agents can update node 
values as they move through the graph.

–	 Such an architecture has advantages over other GCMs for modeling social causality.

Section 5 presents some experimental results from the deployment of a full-scale model in 
the Ground Truth program. Section 6 reviews previous work at the intersection of GCMs 
and MASs. Section 7 summarizes the evidence for our two claims, discusses some implica-
tions of this work, and outlines future directions. Appendix 1 documents other GCMs in 
detail, and Appendix 2 summarizes the variables used throughout the paper.

2 � Definition of a GCM

Humans often represent causality as a directed graph. Philosophers struggle to define cau-
sality [37] (in graph theoretic terms, the semantics of the directed edges). The formalisms 
we discuss sidestep this question. For example, Pearl refuses to define causality, instead 
treating “cause” as an undefined primitive, like “point” and “line” in Euclidean geometry 
[54, pp. 27, 48]. We adopt this position. If an approach presents causal information as a 
directed graph, we understand a directed edge as a causal claim, with a cause at the tail 
and an effect at the head, without quibbling over the precise nature of the edge’s causality. 
(However, we will try to justify the causal intuition behind such edges informally.)

1  In addition to the author, the SCAMP team included Mike Cox, Jason Greanya, Peggy McCarthy, Jonny 
Morell, Sri Nadella, and Laura Sappelsa, with consulting input from Kathleen Carley.
2  Major collaborators include, alphabetically by last name, Rafael Alonso, Ted Belding, Rob Bisson, Sven 
Brueckner, Mike Cox, Keith Decker, Liz Downs, Jason Greanya, Rainer Hilscher, Hua Li, Bob Matthews, 
Scott Page, Rich Rohwer, Mike Samples, Laura Sappelsa, John Sauter, Bob Savit, Peter Weinstein, and 
Andrew Yinger.
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A GCM requires not only a digraph with values associated with the nodes, but also an 
update mechanism that updates the values on nodes. This mechanism is a significant com-
ponent of the causal semantics of the formalism. Formally, we define a GCM

where the components are

–	 a set of nodes N;
–	 a set of directed edges between nodes E ⊂ N × N;
–	 a set of values V that nodes can carry;
–	 a node description function F ∶ N → V  that gives the values associated with each node;
–	 an update mechanism U ∶ F → F� that changes the node description function.

U often uses information associated with the edges to propagate causal effect from one 
node to another. Formalisms intended for human inspection and not computation may lack 
an explicit V, F, and U and rely on informal, qualitative node updating, but do not evade 
this definition. The human users of such formalisms have an informal sense of the promi-
nence of each node, and interpret the graph according to conventions that function as U.

In most methods with computational updating, U is analytic, and involves solving an 
equation. In an appropriately configured MAS, U, executed by agents, can be algorithmic. 
To emphasize this generality, we characterize U as an update mechanism, even though it 
implements a functional.

Most GCMs focus on the directed graph � ≡ ⟨N,E⟩. In the Ground Truth program, the 
“causality” that the social science teams were challenged to recover consisted only of such 
a graph, without V, F, or U. Our interaction with the social science teams showed us that 
the semantics of a GCM involves U, and thus the values V assigned to nodes, as much as 
the structure �, and configuring an MAS as a GCM greatly enhances the potential power 
of U.

3 � A review of graphical causal models

We motivate our approach to modeling causality with agents by summarizing several for-
malisms that exploit the causal intuition of a directed graph (Table 1), including SCAMP to 
facilitate comparison. Columns 2, 3, and 5 describe the N, V,  and U components of Eq. 1 
in each formalism, validating our characterization of a GCM and the framework against 
which our first claim will be demonstrated. The last four columns reflect four requirements 
of a causal model for social scenarios that are, partially or completely, unmet by previous 
models. Our second claim, the relative advantage of an MAS-based GCM, is based on the 
observation that SCAMP, unlike previous GCMs, supports all four of these requirements. 
These four requirements are:

–	 Column 6: Does the formalism estimate the relative probability of different nodes and 
pathways? Decision-makers want to focus on the most likely outcomes, as well as those 
that are intrinsically most serious.

–	 Column 7: Does the formalism support cycles and feedback? Feedback loops are per-
vasive in real systems, and are critical for understanding stability, instability, and emer-
gent behavior.

(1)C ≡ ⟨N,E,V ,F,U⟩
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–	 Column 8: Does the formalism model the quantitative passage of time? Users want 
to know not just that one thing is likely to happen after another, but how long it will 
take.

–	 Column 9: Does the formalism represent agency, expressing who is responsible for 
the various causal influences? Certain dimensions of causality, such as considering 
the goals of different groups, can only be captured if we know who is doing what.

Capturing agency is a distinctive benefit that agents can bring to causal modeling. Strong 
support for agency includes accounting for two contrasting features of causal actors. First, 
they form related groups with similar behaviors. Second, their individual histories give 
each agent a distinctive state that might lead two actors in the same situation to behave dif-
ferently. Lack of the latter capability can lead to unrealistic results in equation-based mod-
els [71], warning of the consequences of ignoring it in GCMs as well.

Existing formalisms vary in their support for these features. In particular, support for 
agency is very weak, yet this feature is critical to modeling human behavior involving 
different interacting groups. SCAMP’s agent-based update mechanism supports all four 
features.

Appendix 1 provides references, details, and examples for each of these formalisms.

4 � The SCAMP formalism

We summarize SCAMP’s stigmergic architecture (Sect. 4.1), then present selected ele-
ments of SCAMP to substantiate our two claims. Full details are available in an ODD 
protocol [18] describing the architecture [43], and in the SCAMP user manual [51]. The 
current implementation is in Java on the Repast platform [3].

The “MP” in SCAMP means “multiple perspectives.” SCAMP currently supports 
four perspectives, two of which are discussed in this paper. For the others, and for fur-
ther details on the two that we do discuss, see [42, 43, 45, 50].

–	 The event perspective is the causal event graph or CEG (Sect. 4.3). This graph has 
two kinds of internal edges: agency edges (Sect. 4.4) and influence edges (Sect. 4.7).

–	 The goal perspective (Sect. 4.5) consists a hierarchical goal network (HGN) for each 
group in the model, and is linked to the CEG.

–	 The geospatial perspective supports event types that require agents to move spa-
tially, and allows agents to interact based on their spatial proximity.

–	 The social perspective allows agents to construct dynamic networks of relations with 
one another based on their co-participation in events or their encounters in geospace, 
and to modify their preferences based on those acquaintances. It also supports the 
dynamic addition of agents to the population, or their removal from it.

The CEG is obligatory. The other three perspectives can be included or omitted, inde-
pendently of one another. The CEG alone is sufficient to demonstrate the correspond-
ence between SCAMP and a GCM, but because of the importance of goal-based rea-
soning in agent-based modeling in general, this paper discusses the goal perspective as 
well. We describe the CEG and HGN selectively, focusing on those details necessary to 
support our claims.
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4.1 � SCAMP’s stigmergic architecture

SCAMP is based on an agent architecture known as “stigmergy.” Grassé [16] coined this 
word in 1959 from the Greek stigma (sign) and ergon (action) to describe insect actions 
that are mediated by signs in the environment (Fig. 1). An agent’s state and local environ-
ment determine its actions, and are modified by its actions. The environment modifies its 
own state, and agents interact by sensing signs left by other agents.

The parade example of stigmergy is the use of pheromones, chemical markers that many 
social insects deposit in the environment (for example, to construct paths between the nest 
and food sources) [6]. In this example, following Fig. 1,

–	 The agent’s state includes its hunger level and whether or not it is currently holding 
food.

–	 The agent’s dynamics, based on its current state and the pheromone concentrations 
that it senses in its environment, are to choose the type and strength of pheromones to 
deposit, and to deposit them at its current location in the environment.

–	 The environment’s state is pheromone concentration as a function of location and time.
–	 The environment’s dynamics evaporates pheromones over time and propagates them 

through space.

Stigmergy usually models animal behavior without reference to anthropomorphic cogni-
tive states [6], and has not classically been applied to realistic social behavior for humans. 
SCAMP uses stigmergy to generate realistic human behavior for testing social science 
methods, as described in Sect. 1. Section 7 summarizes some of the benefits that stigmergy 
brings to this application.

Stigmergy represents the agent’s behavior externally to the agent. SCAMP’s behavioral 
representations are directed graphs, the set of nodes N and set of directed edges E in Eq. 1 
(Sect. 4.3). U for SCAMP (the update mechanism) has three components: the movement of 
SCAMP agents over their environment (Sect. 4.4), influences between elements of N that 
are not directly accessible from one another (Sect. 4.7), and computation of the urgency of 
alternative behaviors from a group’s goals (Sect. 4.5). Sections 4.5 and 4.6 discusses how 
SCAMP’s HGNs and agents, respectively, contribute to U. Thus U is an algorithm that is 
executed, rather than an equation that is evaluated.

4.2 � Groups and feature space

Social scenarios usually involve a set of groups G with which actors can be affiliated. In our 
model of civil conflict inspired by Syria, G includes the Government, Armed Opposition, 

Fig. 1   Basic stigmergic schema 
(Color figure online)
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Relief Organizations, People, Violent Extremists, and the Military. Each group has a 
unique index, returned by GpIndex:G → [0..|G| − 1] . Each agent belongs to one group, but 
can have weighted affiliations with others.

We overload GpIndex in two ways. 

1.	 Every agent a ∈ A belongs to one of these groups, so we allow GpIndex ∶ A → [0..|G| − 1] 
to map each agent to the index of its group.

2.	 Each group has an HGN �  made up of goals � ∈ � , so we allow 
GpIndex ∶ � → [0..|G| − 1] to map any goal in an HGN to the index of that HGN’s 
group.

The critical element in the definition of a group is a vector of preferences P ∈ [−1, 1]k , ini-
tially set by the modeler. k is the dimension of the system’s feature space, so-called because 
this space also defines features of each node in N, as discussed in Sect. 4.3. Elements of 
the preference vector that are greater than zero describe the degree to which an agent is 
attracted to nodes with the corresponding feature, while negative elements describe degree 
of repulsion. The semantics of different elements in feature space depend on the model, but 
in the SCAMP model for the Ground Truth program, they have the following semantics:

–	 The first three elements, the wellbeing preferences, record an agent’s concern for its 
physical, emotional, and economic wellbeing.

–	 The next |G| elements, the urgency preferences, record the degree to which an agent 
wants to advance or oppose the goals of each group.

–	 The final |G| elements, the presence preferences, record the agent’s attraction to or 
repulsion from other agents belonging to each group.

Thus the SCAMP feature space in Ground Truth has dimension k = 3 + 2|G|.
The preferences of individual agents are initialized by sampling around the group’s pref-

erence vector, and they change over time as described in Sect.  4.6. Thus the state of an 
individual agent depends on its individual history, and may differ from the state of other 
agents in its group.

4.3 � Causal event graph

Stigmergy requires a shared environment in which agents interact. In SCAMP, the heart of 
this environment is a Causal Event Graph (CEG) inspired by narrative graphs. A narrative 
environment respects evidence that a fundamental construct underlying human cognition is 
the narrative [11, 30], a sequence of events. Such graphs are common in intelligence analy-
sis [22], cyber security planning [69], discrete event simulation [67], analysis of social dis-
agreement [68], computer games [35], and the study of natural-language texts [62], among 
other applications. These formalisms share the following features with the SCAMP CEG: 

1.	 Nodes (members of N in Eq. 1) are event types, not variables as in most other causal 
formalisms.

2.	 A directed edge between two nodes indicates the narrative coherence of moving from 
one type of event to the next. That is, it would make sense in a narrative of the scenario 
for an agent who had just participated in the source event to participate next in the target 
event. Section 4.4 formalizes and encodes this relation.
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3.	 Any trajectory through the graph represents a plausible narrative.
4.	 The graph summarizes many possible narratives.

We use the term “event type” rather than “event” because agents can visit a single node 
repeatedly. An event instance (or event) is defined by an event type node and a time period 
during which that node has continuous participation by one or more agents. Each instance 
of an event type begins when an agent chooses to participate in an event type in which 
no other agents are currently participating, and ends when no agents are participating in 
the event type. Where there is no danger of confusion, we sometimes overload “event” to 
describe a node in the CEG.

The CEG we developed in SCAMP’s original context has 459 event types and has the 
potential to generate on the order of 1011 possible trajectories (Sect. 5.2). Section 5 summa-
rizes our experience with this full model. For clarity, Fig. 2 presents a much simpler CEG 
representing a classic children’s rhyme.

Little Miss Muffet sat on a Tuffet
Eating her curds and whey.
Along came a spider, and sat down beside her,
And frightened Miss Muffet away.

To illustrate the ability of a CEG to capture multiple possible narratives, this CEG supports 
not only the original poem, but also some variants.

–	 The original poem concludes,

	   Along came a spider and sat down beside her And frightened Miss Muffet 
away

–	 At about age 10, boys discover they can get an entertaining response from girls by mod-
ifying the last line to “And she ate that too.” (Event type 10, eat spider, results in the 
removal of the spider, using mechanisms in the social perspective not discussed in this 
paper.)

–	 Pacifists might prefer a third conclusion, “And they began to play.”

Figure 2 generates all three of these variants, and others besides.

Fig. 2   Causal event graph for Miss Muffet (Color figure online)
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According to Eq. 1, each node n ∈ N  is mapped to a value in V by F. The modeler 
sets initial values, though some can change as SCAMP executes. For clarity we factor 
F(n) into three parts.

–	 F1 ∈ [−1, 1]k, where k = 3 + 2|G|, is a vector in feature space (Sect. 4.2) describing 
the attractiveness of the node to agents.

–	 It is not meaningful for agents of every group to participate in every event type. 
F2 ∈ 2G records the groups whose agents have agency for the node. In our exam-
ple (Fig.  2), Miss Muffet has agency for the blue (upper) nodes, the spiders have 
agency for the red (lower) nodes, and both groups have agency for node 13.

–	 F3 is the parameter of an exponential distribution (corresponding to inter-arrival 
times in a Poisson distribution) that an agent samples to learn how long its par-
ticipation lasts. Thus durations can vary not only between event types, but also 
between agents on the same event type.

For Ground Truth and Miss Muffet, the semantics of F1 are defined in the same space 
as preference vectors (Sect. 4.2), as follows:

–	 The first three elements (wellbeing features) record the impact of the event type on 
a participating agent’s physical, emotional, and economic wellbeing. An agent with 
a high preference for one of these elements will seek events with a high value for 
the corresponding feature.

–	 The next |G| elements (urgency features) record how urgent execution of the event 
type is to satisfying the HGN of each group, based on the current state of the HGN 
(Sect. 4.5). An agent with a high preference for advancing a group’s goals will seek 
events with a high urgency feature for the group. Depending on its preferences, an 
agent can seek to advance the goals of groups other than its own, or pursue actions 
contrary to its own group’s goals.

–	 The final |G| elements (presence features) record recent degree of participation 
of agents belonging to each group in the event type, generated as described in 
Sect. 4.6. These features are the most direct parallel to insect pheromones. An agent 
that desires to encounter agents of a given group will seek events with a high pres-
ence feature for that group.

We use F1[wellbeing],F1[urgency], and F1[presence] to designate these subvectors, 
and further index them to select a single element. In the present version of SCAMP, 
agency F2, the event duration parameter F3, and F1[wellbeing] are defined by the mod-
eler, and U changes only F1[urgency] (via goal edges, Sect. 4.5) and F1[presence] (via 
the direct activity of agents, Sect. 4.6. But one can envision processes that modulate 
F1[wellbeing] as well, based on external data.

Preferences of agents and features of nodes in the CEG represent the time-depend-
ent states of individual agents and individual event types, respectively.

The edges E in the CEG are of two types: agency edges and influence edges. We 
explain agency edges next. Influence edges will make more sense after we discuss 
agents in Sect. 4.6.
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4.4 � Agency edges

The solid edges in Fig. 2 are agency edges. An agent on the source of an edge includes 
the edge’s destination among its options for its next choice of participation. For exam-
ple, if Miss Muffet is currently sitting on her Tuffet (event type 1), she can subse-
quently choose either to leave the Tuffet (event type 5) or play with the spider (event 
type 13). The agency edges labeled “then” connect a single current event to a single 
option for the next event.

An agency edge extends from m to n, m, n ∈ N, on two conditions: 

1.	 F2(m) ∩ F2(n) ≠ �, that is, one or more groups have agency for both events.
2.	 The edge is narratively coherent, that is, it would make sense in a narrative for an agent 

who has just participated in m to participate next in n.

The thenGroup multiedge specifies event types in which agents participate concur-
rently, if they enter the nodes through the thenGroup edge. For example, thenGroup 
would allow an agent to participate concurrently in event types walk and chew gum. At 
first glance, such a capability violates the principle that an agent can only participate 
in one event at a time. Here is how thenGroup works in SCAMP.

On parsing a thenGroup edge, SCAMP constructs an event group, a single node 
in the CEG that acts as a container for the set of nodes to which the thenGroup edge 
leads. (Each of these nodes may also have its own incoming edges, if it makes sense 
for some agents to participate in it alone.) The event group has the following features 
and constraints.

–	 F3 for the event group, its duration, is the maximum of the durations returned by the 
contained nodes, since an agent needs to complete all contained events before mov-
ing on.

–	 F1 for the event group, its feature vector, is the mean of the feature vectors for the 
contained nodes.

–	 Some event types require a participating agent to move through geospace from 
its current location to event-dependent destination. A physical agent cannot con-
currently move to different destinations, so at most one geospatial event type is 
allowed in an event group.

–	 The outgoing agency edges of the event group are the combined outgoing agency 
edges of all contained events, and an agent participating in the event group consid-
ers all of these agency edges in choosing its next event.

Agency edges are the foundation of SCAMP’s update mechanism U, because an agent 
can augment the presence features of event types in the CEG only by visiting those 
nodes. These presence features drive other components of U via influence and goal 
edges.

The agency edges in Fig. 2 do not in themselves fully satisfy our causal intuitions. 
Event type 2 eat curds does not in itself cause either 4 read a book or 10 eat spider. 
However, the combination of these edges with an agent on event type 2 who is moti-
vated by its preferences to choose one of these successors is causal. As we asserted in 
Eq. 1 and showed in Sect. 3, in all causal formalisms, the update mechanism U is an 
essential part of the causal semantics, and SCAMP is no exception.
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4.5 � Hierarchical goal network

SCAMP supports a hierarchical goal network (HGN) [70] for each group g ∈ G, describing 
the high-level goal for the group and its decomposition into subgoals. In this discussion, 
for conciseness, the term “goal” can indicate either the root goal or a subgoal. A goal is a 
state of the world that the members of the group wish to achieve, in contrast to the events 
or actions that describe the event types in the CEG. For example, states do not have agency 
or duration, as events do. (The same features distinguish hierarchical goal networks from 
hierarchical task networks, whose nodes are events.) The satisfaction of a goal is an esti-
mate of how well the goal is being achieved in the current state of the world, what TÆMS 
[23] calls quality. A goal’s urgency is an estimate of how critical the goal currently is to 
achieving the overall (root) goal.

HGNs satisfy Eq. 1, but the components N, E, F, V, U function differently than they do 
in the CEG, because agents do not move over the HGN as they do over the CEG and geo-
spatial lattice.

The nodes N of an HGN for group g are a set of goals � ∈ � (g). The HGN is acyclic and 
rooted. �0, the root, is the highest-level goal, to which all the others are subgoals. �leaves(g) 
is the set of leaf goals, or leaves (goals whose subgoals are not defined). From this point 
on, we understand �  to refer to the goals for a single group and omit the reference to g.

E contains two kinds of edges, combining and zip, whose function is discussed below 
under U. Combining edges connect goals to each other, while zip edges combine leaf goals 
to events in the CEG.

Figure 3 shows an HGN for Miss Muffet and its relation to the CEG. The rounded rec-
tangles across the bottom are event nodes in the CEG. For clarity, we suppress agency and 
influence edges. The squared rectangles are goals in the HGN, culminating in the root goal 
at the top. Solid arrows between goals are combining edges from subgoals to their higher-
level goals. Or edges indicate that any subset of subgoals can satisfy the higher-level goal. 
And indicates that all of the subgoals are required to satisfy the higher goal. Dashed arrows 
are zip edges connecting specific event types in the CEG to leaves in the HGN.

For clarity, Fig. 3 shows only edges directed toward the root. For each of these edges 
there is also an inverse edge (of types invAnd, invOr, invSupport, and invBlock) between 
the same two nodes, in the reverse direction. Informally, U propagates satisfaction, gen-
erated by activity on events zipped to the leaf nodes, to the root along the edges in the 

Fig. 3   Hierarchical goal network for Miss Muffet (Color figure online)
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diagram, and propagates urgency from the root back to the CEG nodes along the inverse 
edges. The HGN thus functions as a multiedge among CEG nodes that are zipped to it. It 
translates presence features on these nodes into urgency features on the same nodes, allow-
ing agents to modulate their preference-based selection along agency edges in light of the 
relevance of the alternatives to the goals of each group g ∈ G.

The values V returned by F from goals in the HGN have two components, which we 
subscript to distinguish them from F in the CEG.

–	 F4 ∶ � → [0, 1] is a goal’s satisfaction.
–	 F5 ∶ � → [0, 1] is a goal’s urgency.

For HGNs, the fourth element in Eq. 1, U, has two parts, one that updates F4 (satisfaction), 
and the other that updates F5 (urgency). Both satisfaction and urgency update through 
bounded addition and subtraction, constraining their values to [0,  1] on each goal. This 
mechanism is inspired by quality propagation in TÆMS [23], as extended in our earlier 
work on rTÆMS [46].

To update F4, each � ∈ �leaves consults the CEG nodes that are zipped to it along zip 
edges. It adds 

∑
F1(n)[presence] for each CEG node n that has a support zip edge to it, and 

subtracts 
∑

F1(n)[presence] for each n that has a block zip edge to it. In both cases the sum-
mation is over the group-specific elements of F1. Informally, the higher the recent agent 
participation (by all groups) on supporting CEG nodes and the less recent participation on 
blocking nodes, the higher the satisfaction of the subgoal. Satisfaction propagates upward 
through or edges as the maximum of the satisfaction levels of the subgoals, and through 
and edges as the minimum.

Once the root �0 knows its satisfaction, it updates its urgency, F5(�0) = 1 − F4(�0), 
which it propagates along the inverse edges. A goal passes its urgency directly to subgoals 
to which it has an invAnd combining edge. Subgoals joined via invOr subtract their own 
satisfaction from their parent’s urgency. Finally, each leaf goal � adds its urgency F5(�) to 
F1(n)[urgency][GpIndex(�)] for each invSupport zip it originates, and subtracts its urgency 
from F1(n)[urgency][GpIndex(�)] for each invBlock zip it originates, thus contributing to U 
for F1.

An event type for which one group has agency can change the satisfaction of goals of 
other groups, and also respond to the urgency levels in other HGNs, if it is zipped to sub-
goals in those HGNs: the HGN in Fig. 3 is for Miss Muffet, but is blocked by spider event 
type 8. As a result, agents can modulate their decisions by the desire to advance or hinder 
the goals not only of their own group, but of other groups as well.

4.6 � Agents

With these elements in mind, we can trace the operation of SCAMP’s agents.
Each agent a ∈ A has a preference vector P ∶ A → [−1, 1]k, k = 3 + 2|G| over feature 

space, sampled around the preference vector of its group, with weighted contributions 
from other groups with which it is affiliated. Let Succ(n) be the set of CEG nodes at the 
destinations of agency edges originating at node n. An agent a currently on node n com-
putes the dot product between the agent’s preference vector and the node’s feature vector 
for each m ∈ Succ(n) for which a ∈ F2(m) (that is, each successor for which a has agency). 
It exponentiates each value (to make it positive), and normalizes the set to form a roulette 
wheel that it spins. Before normalization, each value is raised to a power that controls the 
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determinism of the roulette. A determinism of 0 sets all values to 1 and results in a com-
pletely random choice, while determinism greater than 1 increases the chance that the larg-
est value will be chosen. This process yields a probabilistic transition, as in POMDPs, but 
the probabilities emerge from psychologically realistic (event type) features and (agent) 
preferences, which modelers can define much more naturally than transition probabilities.

SCAMP represents each actor by a polyagent [47], a single avatar that continuously 
deploys a swarm of ghosts to explore the future. This construct is an important part of 
SCAMP’s time model. Each avatar maintains its current domain time, which it updates 
each time it ends its participation in an event (in other words, when it advances to the next 
event node in the CEG). When it leaves its current node n ∈ N , it computes the length of 
time it has spend on that node. If the current event node is a geospatial node, the duration 
of the event is the length of time the avatar took to move to the geospatial goal, as outlined 
in [43]. Otherwise the avatar samples an exponential distribution with parameter F3(n) and 
adds it to its current domain time to obtain its new domain time. Avatars begin execution 
ordered by their domain time, so that they do not run ahead of each other in time. Their 
ghosts travel into the future a configurable distance to explore the value of each decision 
alternative.

An avatar’s execution has two phases.
First, it sends out several successive shifts of ghosts, each with multiple ghosts. The 

number of ghosts per shift and the number of shifts are parameters of the avatar’s group.
All ghosts carry the avatar’s preference vector, but because of roulette selection, they 

do not necessarily follow the same trajectory. Thus ghosts within a shift sample alternative 
futures for the avatar. The number of ghosts per shift controls the breadth of the avatar’s 
reasoning about the future, that is, number of alternative futures that it considers. Each 
ghost a contributes to U by augmenting the presence features of the event types in which it 
participates ( F1[presence][GpIndex(a)] ), a digital analog of pheromones in social insects. 
The strength of the deposit depends on the quality of the ghost’s individual path (the sum 
of the dot products of its preference vector and the feature vectors of the nodes actually 
visited).

F1[presence] is augmented only by ghosts, not avatars. The first shift of ghosts sees no 
presence features. Ghosts in later shifts respond to presence features deposited by earlier 
shifts. The number of shifts thus controls the recursive depth of the avatar’s reasoning 
about the future.

Second, after all shifts are complete, the avatar a chooses among the successors of 
its current node n (Succ(n)) by applying roulette selection to its group’s presence fea-
tures F1[presence][GpIndex(a)] on Succ(n). Thus the agent’s decision is probabilistic, not 
deterministic.

When the agent leaves one CEG node and moves to another, it updates not only its time 
to reflect the duration of the completed event, but also its wellbeing preferences and overall 
wellbeing, based on the wellbeing features of that event. If a given wellbeing feature is pos-
itive, the agent’s wellbeing increases, but its preference for that feature decreases, reflecting 
satiation, while if a feature is negative, the agent’s wellbeing decreases and its preference 
increases. Thus agents’ decisions (and the U that they implement) are not Markovian in 
event space, but reflect their past history and experiences.

Like pheromones, presence features evaporate exponentially over time. For example, 
consider a stationary ghost that augments its group’s presence feature at its current loca-
tion by d each time step, while the feature evaporates each step by the factor e ∈ (0, 1) . 
The most recent deposit contributes d, the one from the previous time step de, the one 
from two time steps back de2 , and so forth. Thus the total presence feature after k steps is 
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d + de + de2 +⋯ + dek−1 = d
∑k−1

i=0
ei , which is just the geometric series, and asymptotes 

to d∕(1 − e).

4.7 � Influence edges

Influence edges (dashed edges in Fig.  2) capture causal influences among event types 
between which agents do not move directly. For example, a spider sitting by the Tuffet 
(node 8) may influence Miss Muffet to leave her Tuffet (node 5), but the spider does not 
have agency for node 5 and cannot participate in it.

An influence edge from CEG node m to n adjusts the segments in any roulette wheel 
that includes n, based on 

∑
F1(m)[presence] , the total recent participation by all groups on 

m.
SCAMP supports four kinds of influence edges. The hard influences prevent and ena-

ble probabilistically exclude or include a successor’s segment in the roulette, weighted by ∑
F1(m)[presence] . The soft influences enhance and inhibit adjust the size of successor’s 

segment, based on 
∑

F1(m)[presence].

5 � Experimental results

For clarity of exposition, this paper has focused on a toy example causal model. In the 
Ground Truth program, SCAMP modeled and simulated a much more complex causal sce-
nario, described in detail in [50]. To allow this paper to stand alone, this section repeats 
some of the experimental details from that paper that concern the event and goal perspec-
tives. The full paper also gives results from the geospatial and social perspectives. In evalu-
ating these results, it is important to keep in mind that the purpose of simulators in the 
Ground Truth program was to generate realistic data, not to replicate a real situation. Thus 
our work so far has not included fitting the model to data and generating testable predic-
tions, though we are currently extending methods that we previously applied for this pur-
pose in geospatial [66] and emotional [40] models.

5.1 � Scenario

The model we built in SCAMP, Conflict World, reflects multipartisan conflict in an 
imaginary country (Tharum) inspired by (but not a detailed replica of) Syria. Every 
agent is belongs to one of the groups involved in the conflict, here listed with their initial 
population: 

1.	 The government (GO) is authoritarian, bent on retaining its own control of the situation, 
and willing to oppress its people to keep them in line (16 agents).

2.	 In some configurations, a distinct military (MIL) is initially aligned with the govern-
ment, but can diverge (6).

3.	 The armed opposition (AO), inspired by the Syrian opposition, is a movement within 
the country that seeks to reform or replace the government with democratic institutions 
(11).

4.	 The violent extremists (VE), inspired by ISIS, are an ideologically driven foreign faction 
that seeks to include the local territory in a larger religious state (16).
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5.	 Relief agencies (RA) seek to provide humanitarian relief for civilians, largely in the form 
of refugee camps both within and just outside of Tharum (6).

6.	 People (PEO) are pro-opposition, anti-government civilians, trying to live their lives 
(11).

The small initial population (66 agents) may seem unrealistic. However, each avatar deci-
sion comes from a swarm of 24 ghost agents, so the actual exploration of alternatives 
involves nearly 1600 agents. In addition, the social dynamics perspective [50] allows new 
agents to join the simulation as it runs (for example, an influx of foreign fighters). In one 
run, the simulation peaked at 850 avatars (20,400 ghosts) and ended with 548 avatars (over 
13,000 ghosts).

5.2 � Event types and the causal event graph

The model of Tharum supports 459 event types, including:

–	 large numbers of people move to urban areas
–	 public demands democratic reforms
–	 government security forces arrest minority leader
–	 military refuses to carry out government’s orders
–	 government and opposition leaders commence official talks
–	 neighbors leave
–	 people arm themselves
–	 relief agencies identify an increase in unplanned need
–	 military bombs opposition-controlled neighborhoods
–	 funders of relief agencies lose interest in conflict
–	 protesters share political news on social media
–	 quality of life at internally displaced people camp improves
–	 government and armed opposition forces cease negotiations
–	 head of state/government calls for end to violence
–	 transitional government invites election monitors

An important part of intelligence analysis (or scenario modeling) is anticipating possible 
patterns of behavior that the actors of interest might exhibit. Analysts commonly describe 
scenarios in terms of possible narratives, making the CEG a natural representation for cap-
turing complex social situations, and we originally developed the CEG in support of intel-
ligence analysis [65]. One benefit of this representation is that it amplifies the creativity of 
analysts by combining narratives that they explicitly formulate to yield a huge number of 
other narratives that are consistent with these. Ground Truth is not concerned with analytic 
creativity, but this same amplification means that the CEG can generate an incredibly large 
number of different behavioral trajectories as data for the research teams.

A simple example illustrates this amplification. An analyst might consider possible nar-
ratives A → B → C and D → B → F, offering agents a total of two possible histories. But 
if we merge the narratives on event type B, the number of possible trajectories doubles 
(adding A → B → F and D → B → C ), without defining any additional events.

The amount of combinatorial amplification depends on the length of the analyst’s indi-
vidual narratives and the number of common event types among them, but we can calibrate 
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our intuitions. If we add START and STOP nodes, the CEG is an irregular directed lattice.3 
Consider the paths between diagonally opposite corners in a square directed lattice of side 
k. Such a lattice contains (1 + k)2 nodes. Except for the START and STOP nodes, this is the 
number of event types that the analyst must define. The average node degree in a square 
lattice asymptotically approaches 4, and by symmetry in-degree = out-degree = 2. Each 
path from START to STOP has 2k steps. To go from the lower-left corner to the upper-
right one, the agent must choose k out of its 2k steps to go up, and go right on the other 
half, so the number of simple paths is given by the central binomial coefficients, 2kCk [8].

Our CEG for Ground Truth has 459 nodes, or 461 with the addition of START and 
STOP. 461 is not an exact square, but we can build intuition with a lattice of 441 nodes (k 
= 20), which generates more than 1.3E11 possible trajectories, each of length 2k = 40. The 
analyst needs to conceptualize only enough narratives to generate the desired number of 
event types, with enough overlap to link them into a lattice. For a square lattice with inde-
gree = outdegree = 2, each event type should appear on average in two narratives. Thus 22 
narratives of length 40 ( 2 × 441∕40 ) covering 441 distinct event types suffice to yield a 441 
node lattice, far fewer than the 1.3E11 trajectories such a lattice contains.

Our model of Tharum has an average degree of 4.7. The event indegree and outdegree 
distributions are highly skewed (Fig. 4), and nearly identical. The events with no outgoing 
edges are STOP nodes for each group, and one event (START) has no incoming edges. 
This skewing reduces the generative power of the CEG, but even so the number of possible 
paths greatly exceeds those envisioned by the modeler. SCAMP’s swarming ghosts develop 
a probability field over this massive space, sampling it for data generation (in Ground 
Truth) or for intelligence analysis.

Most event types are restricted to agents of one or a few groups, according to F2. Thus 
the narrative space is partitioned into smaller subgraphs for each group. However, agents 
can move from one subgraph to another, if they are affiliated with both groups.

Figure 5 shows the CEG for the Conflict World. Colors reflect the agency of the vari-
ous events. This CEG generates a huge number of alternative narratives, giving a very rich 
event space within which agents move.

Fig. 4   Degree distribution in 
challenge 3 CEG (Color figure 
online)

3  SCAMP allows cycles, so the CEG no longer defines a partial order over events, but this discussion 
excludes such cycles. Their presence strengthens our argument by adding to the space of possible narra-
tives.
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The START node for all groups is at the upper left of Fig. 5, and has edges to all of 
the group subgraphs. Each group has its own STOP node, at the right. When an agent 
reaches a STOP node, or some other node that (because of prevent influence edges) 
offers no next choices, it returns to START, but in most cases will not retrace its previ-
ous path, since its own state and the state of the event nodes will have changed. Each 
time the overall participation on a CEG node goes from zero to non-zero, a new instance 
of that event type begins, and ends when the node’s participation next drops to zero.

The main data about events available to the social science research teams is an agent 
history reporting, for each agent, the event in which it is participating at successive 
times. For example, Table 2 shows the trajectory for an unaffiliated military agent, that 
is, the history of events in which it participates. Each agent maintains its history inter-
nally, but after each agent movement, we also log the move in a file for subsequent 
analysis.

The similarity among agents in the same group can be detected by comparing their tra-
jectories. One way to do this is with the “string edit” or “Levenshtein” distance [34], which 
is the minimum number of changes (additions, deletions, or replacements of one element 

Fig. 5   Causal event graph for Tharum Conflict World (Color figure online)

Table 2   Example event trajectory for an unaffiliated military agent

Domain time Event number Event name

1 E521 Military perceives threat to peace and security
17 E536 Military implements operational plans
28 E351 Government sets up checkpoints at official border crossings
143 E24 Government and armed opposition forces increase fighting in border regions
209 E281 Government and armed opposition forces wage fierce battle for control of 

critical territory
409 E281 Agent dies
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by another) needed to change one list of elements into the other. Figure 6 shows the result 
of plotting such similarities from a run, using multidimensional scaling (R’s isoMDS).

The plot clearly reflects the impact of a per-group parameter that defines how much 
each agent’s preferences vary from the group baseline. The preferences of Gov agents are 
sampled ± 0.2 around the values in the group baseline, AO, VE, and RA vary ± 0.3 , and 
Peo vary ± 0.4 . (In this particular run, there was no separate Military; Neu(tral) agents have 
randomly assigned preferences.) Groups with low sampling variation generate similar tra-
jectories, while those with higher variation generate more diverse trajectories. Affiliations 
of individual agents with multiple groups also diversify their trajectories.

The dynamics of SCAMP, driven by agent decisions, drastically restrict the state space 
generated by linked narratives. All nodes in Fig. 5 are reachable from the START node, 
but when we run SCAMP, the actors visit only 252 of the nodes and traverse only 461 of 
the edges. A lattice of 252 nodes contains over 108 trajectories, but in fact the 850 actors, 
belonging to 6 groups with different goals and preferences, generate only 164 distinct tra-
jectories in all. This huge reduction is an emergent property of the system’s causal dynam-
ics. Analysts could not anticipate it by inspection. Nor is this a brittle result of a single 
run, because SCAMP samples stochastically and generates a probability distribution over 
possible futures.

5.3 � Goals

The exogenous and presence features on event nodes support tactical decisions by agents, 
based on their preferences for these features. Hierarchical goal networks (HGNs) for each 
group modulate the urgency features, supporting strategic decisions. The HGNs for the six 
groups have a total of 122 goals and subgoals. Of these, 77 subgoals are leaves, zipped to 
177 event types.

Figure  7 shows an example of how satisfaction levels at the root of each HGN vary 
over time in a version of the model without a distinct Military group. The Armed Opposi-
tion rapidly gains satisfaction, but then becomes more frustrated as Government satisfac-
tion increases. Relief Agencies take longer to achieve their goals, but as long as they do, 

Fig. 6   Trajectory similarities 
(Color figure online)
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the People achieve some satisfaction. However, as the satisfaction of Armed Opposition 
decreases, so does that of Relief Agencies, and then that of People.

The paper on which this section is based [50] includes details on the geospatial and 
social perspectives, and experimental results from those perspectives, as well.

6 � Previous work combining MASs and GCMs

Every MAS embodies causality, because it models how the environment changes the 
agent’s state and how the agent seeks to modify its environment. Thus every MAS may 
be described by an external causal model, but not every MAS may be said to reason over 
a causal model while updating values on its nodes. Examples of MASs that do satisfy this 
criterion do not provide functionality beyond what a non-agent form of the model would 
support.

The literature reflects two kinds of relations among agents and GCMs. In some cases, 
the entire GCM is internal to each agent. In others, different parts of the GCM are assigned 
to different agents. Both of these approaches differ from SCAMP. Unlike the first, our 
agents do not contain the GCM. Rather, the GCM contains the agents. Unlike the second, 
our agents represent domain actors, not segments of the GCM, and move over the GCM in 
updating it. Table 3 summarizes some previous examples, and includes SCAMP for ease of 
comparison.

For our purposes, the most distinctive feature of each approach is the relation between 
the agent and the GCM.

Multiply-sectioned Bayes networks (MSBNs) [79] assign homogeneous subnetworks of 
a Bayes network to different agents, to limit the amount of inference that is needed when 
the network is updated with new data. In their original form, agents in MSBNs have no 
natural alignment with actors in the domain, though extensions to MSBNs support domain 
agents [78].

Agents often have internal GCMs to support part or all of their reasoning. A GCM 
such as a Bayes network or its generalization as an influence diagram may be the means 
by which an agent interprets its environment (for example, maintaining models of other 
agents) as one part of its cognitive processing [1]. In a more advanced version of this 

Fig. 7   Satisfaction levels in an early experiment (Color figure online)
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approach, each agent’s entire behavior is driven by an explicit causal model, for example, 
a POMDP [57, 58]. In these systems, each agent is indeed updating a GCM, using the U 
appropriate to the formalism, but the focus is on how the causal model supports the agent, 
not on how the agent can enhance causal reasoning. Neither embedding the causal model 
in an agent nor having multiple agents addresses the limitations intrinsic to the specific 
GCM used.

Agent-encapsulated Bayes networks identify specific input and output variables in each 
agent’s internal network, unifying the inter-agent communication model with the internal 
structure of the network.

Initial efforts to distribute processing of POMDPs across agents without communica-
tions [5] led to the discouraging result that the complexity of processing for two or more 
agents is complete in non-determininstic exponential time (NEXP). Allowing communi-
cations yields the communicative multiagent team decision problem (COM-MTDP) [59], 
which makes the problem tractable. But as with other multi-agent approaches discussed so 
far, the GCM is internal to the agents. The research emphasis in these programs is in man-
aging information sharing among components of the network, not in advancing technical 
support for causal reasoning.

We know of no prior work comparable to the approach described here, in which

–	 agents representing domain actors
–	 move dynamically over a GCM to update it,
–	 fully supporting all four of the requirements summarized in the Introduction (proba-

bilistic analysis of alternative pathways, cycles and feedback, quantitative time, and 
agency associated with different causal factors).

SCAMP was constructed for a specific purpose (generating realistic social data). But it 
leads us to the novel insight that an MAS, as a computational mechanism, may have as its 
primary purpose the analysis of a GCM, extending the GCM’s expressiveness compared 
with current causal models.

7 � Discussion

Five issues deserve discussion. 

1.	 How does SCAMP demonstrate our two main claims?
2.	 How can a stigmergic system, inspired by biological agents with low levels of cognition, 

generate data consistent with human social and psychological behavior?
3.	 What are the benefits of a stigmergic approach?
4.	 What limitations does it impose?
5.	 To what further research topics do our insights lead?

7.1 � Demonstrating the claims

We began with two claims: 

1.	 A stigmergic MAS with an appropriate stigmergic environment is a GCMs.
2.	 Such an MAS has advantages over other GCMs for modeling causality in social systems.
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SCAMP demonstrates both of these claims.
An extensive survey of GCMs (Sect. 3 and Appendix 1) shows that they all satisfy the 

four features in Eq. 1. SCAMP has these same four features, as summarized in Table 4. 
This alignment demonstrates the first claim.

In Sect. 1, we avoided a formal definition of causality, simply declaring that a directed 
edge in a causal graph implies causality. Still, it is helpful to consider informally how each 
type of edge in a SCAMP model reflects our intuitions about causality.

The SCAMP edges that correspond most closely to edges in traditional causal modes 
are influence edges in the CEG. These edges directly assert that participation of agents in 
one type of event directly modulates the likelihood that another type of event will attract 
participation.

The CEG’s agency edges record which next types of events make sense for an agent cur-
rently on a given event. The simple structure of these edges is not causal: the fact that one 
event follows another does not mean that the first caused the other. But we have repeatedly 
emphasized that causality in any GCM includes not only its structure, expressed in N and 
E, but also its update mechanism U. SCAMP’s update mechanism in the CEG is driven 
by decisions that agents make about which next events best satisfy their immediate prefer-
ences and their strategic goals. In modeling social scenarios, human choice is a critical 
component of causality, and the agency edges show how the environment constrains and 
guides that choice.

The edge types in the HGN record the causal relation between events that happen in the 
world and the level of satisfaction that agents feel, which in turn provides strategic direc-
tion to their behavior. The normal edges (zip, and, and or) adjust the agents’ satisfaction 
based on what is happening in the world, while the inverse edges (invZip, invAnd, and 
invOr) modulate the attractiveness of event types in the CEG as agents consider their next 
steps.

Our second claim asserts that an appropriately configured MAS supports the four 
requirements where other GCMs fall short: probability, cycles, time, and agency. SCAMP 
supports these requirements.

Probability is supported in two ways. (1) Roulette-based decisions model the non-deter-
minism of human choice. The probability of these transitions is not static and defined exog-
enously, but emerges from psychologically realistic modeling primities (agent preferences 
and event features) that vary over time. (2) The presence features on each event type are 
deposited by polyagent ghosts as they plan paths for their avatars, and avatars follow the 

Table 4   SCAMP satisfies Eq. 1

Compo-
nent in 
Eq. 1

Function SCAMP (Sect. 4)

N Nodes in directed graph Event types in CEG; Subgoals in HGN
E Directed edges among nodes CEG: agency and influence edges; HGN: and, or, zip edges and 

their inverses
V, F Values on nodes CEG: F1 (wellbeing, urgency, presence features), F2 (agency), F3 

(duration parameter); HGN: F4 (satisfaction), F5 (urgency)
U Update mechanism CEG: modifies F1[presence] by ghost deposits; HGN: modifies 

F1[urgency] along inverse zip edges; F4 along zip and combin-
ing edges; and F5 along inverse combining edges
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crest of the presence field for their group. Thus the presence features on event type nodes 
are, up to a normalizing constant, the probability that agents of each group will participate 
in that event type. While each avatar follows only a single path, we log the presence fea-
tures over time, allowing us to recover the time-varying probability of alternative futures.

Cycles and feedback are possible because CEG nodes have nominal durations but not 
start times. Time-anchored events are an emergent feature of the system’s operation, as 
agents begin and end their participation in event types. Thus an agent can meaningfully 
revisit an event node multiple times.

Time is based on the duration feature of a CEG node F3(n) from which an agent samples 
the duration of its participation in event type n. Agents execute in order of their individual 
time, so the start and end times of each event are well defined.

Agency is supported in three ways. (1) An agent can only choose an event type n for 
which its group has agency (that is, the group is a member of F2(n) ). (2) Agents belong to 
groups within which preferences are similar. (3) Each agent’s wellbeing preferences (and 
an overall wellbeing variable) vary with its experiences, so that different agents with differ-
ent histories encountering the same environmental state may behave differently.

7.2 � Stigmergy and human cognition

It may seem counterintuitive to use stigmergy, a mechanism inspired by social insects, 
to generate cognitively realistic behaviors. The most direct approach to such constraints 
would seem to be an agent model such as Belief-Desire-Intention (BDI) [61], or one based 
on Bayesian formalisms believed to reflect human cognition. However, these approaches 
embed cognitive behavior in the agent code. We want professional analysts, subject-matter 
experts with no computer programming experience, to generate our causal ground truth.

Our solution, justified in more detail in [42], lies in “Simon’s Law” [72]:

An ant, viewed as a behaving system, is quite simple. The apparent complexity of 
its behavior over time is largely a reflection of the complexity of the environment in 
which it finds itself.

Simon extends this principle to human behavior:

Human beings, viewed as behaving systems, are quite simple. The apparent complex-
ity of our behavior over time is largely a reflection of the complexity of the environ-
ment in which we find ourselves.

In spite of stigmergy’s simplicity, Simon’s Law enables SCAMP to capture psychologically 
and socially realistic dynamics.

–	 The preference-feature method for selecting options models deliberate choice.
–	 The use of a roulette reflects modern insights into non-deterministic decision-making 

[7].
–	 Strategic (goal-driven) decisions are a recognized feature of human rationality [70].
–	 So is use of mental simulation (modeled by polyagents) to look ahead in time [30].
–	 In SCAMP’s social perspective (not discussed in this paper), agents adjust their prefer-

ences as they interact with other agents encountered on event types or geospatial tiles 
[13].

–	 The foundation of the CEG in studies of narrative reflects the centrality of narrative as a 
mental representation [11].
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–	 Indirect constraints on agents via influence edges, HGNs viewed as multiedges across 
event types, and (in the full model) interactions in geospace provide realistic bounds on 
the rationality of individual agents [73].

[42] discusses these features in more detail.

7.3 � Benefits of stigmergic processing

While SCAMP’s stigmergic architecture is unusual compared with other architectures 
commonly used in agent-based modeling, it has several benefits.

–	 SCAMP captures numerous features of modern psychological theory (Sect. 7.2 ).
–	 SCAMP’s causal rules are human-readable graphs that analysts can readily understand 

and personally construct and modify. Other formalisms may use graphs to document 
the internal structure of the agent code, but the risk remains of a mismatch between 
the understanding of the analyst and that of the software engineer. The isomorphism 
between SCAMP and a GCM is particularly clear because SCAMP’s stigmergic mecha-
nisms allow it to reason over a graph with clearly defined N and E.

–	 SCAMP’s different perspectives are integrated through their effect on the scalar compo-
nents of the feature vectors of CEG nodes and the preference vectors of the agents. This 
interface among different perspectives is minimal, compared with the representations 
often required by conventional agents to connect (say) group goals, social connections, 
and agent decisions with one another. Integrating perspectives by modifying vectors of 
scalars makes implementation of additional perspectives straightforward.

–	 With conventional agents, estimating distributions over alternative possible outcomes 
requires repeated runs. SCAMP’s polyagent technology generates a distribution of pos-
sible outcomes (the ghost pheromone field) with a single run. In our current configura-
tion, we use this distribution to generate a single trajectory, but the pheromone field 
could be analyzed to develop (for example) uncertainty bounds around the results of a 
single run.

7.4 � Limitations of stigmergic processing

Researchers familiar with other agent technologies that might be used in social modeling 
(such as BDI architectures [61]) may find SCAMP limiting in two ways: the informal 
nature of the events and goals that it uses to define a scenario, and the lack of direct intera-
gent messaging.

Given the rich tradition of knowledge representation and symbolic reasoning in classical 
AI, the natural-language labels on CEG nodes and HGN goals in SCAMP seem naïve and 
undisciplined. In fact, the program does not understand these labels. Decisions are based 
on

–	 the structure of agency and influence edges in the CEG,
–	 the pattern of and and or edges in the HGNs,
–	 the zip edges that connect the CEG and the HGNs together,
–	 and the preferences and features assigned to groups and events, respectively.
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Viewed by themselves, these details are semantically impoverished. But they do not oper-
ate by themselves. One design objective of SCAMP was to enable domain experts who are 
not programmers to construct and modify complex social models [45], and in the course of 
the Ground Truth program, such experts successfully constructed and meaningfully inter-
preted multiple models. The labels they assigned to events and goals guided their selection 
of edges, preferences, and features, and we repeatedly observed how discussions of the 
natural-language labels influenced analyst decisions about model connectivity and param-
eters. The human modeler is the link that relates SCAMP’s formal structure and its seman-
tics. The alternative presented by a semantically rich representation raises the knowledge 
acquisition barrier between a software engineer and an analyst, resulting in a model that is 
opaque to the user.

One disadvantage of a purely stigmergic model is that agents cannot exchange mes-
sages directly with one another. But stigmergy is not an all-or-nothing design decision for 
agents. Humans are the parade example of explicit rational reasoning and symbolic com-
munication, and yet numerous human behaviors are most naturally viewed as stigmergic 
[41]. SCAMP itself violates strict stigmergy in the social perspective, discussed in other 
publications [50]: if two agents participate in the same event type or visit the same geo-
spatial tile concurrently, they exchange their preference vectors and use them (according 
to individual parameters) to modify their own preferences, modeling the influence of our 
associates on our own attitudes. Though highly stereotyped, this extension demonstrates 
that a stigmergic code base can be extended to provide more conventional features, such as 
a rich interagent language.

7.5 � Directions for future work

Our insights in this paper can be usefully extended in several ways.

–	 In our current system, exogenous components of the feature vector ( F1[wellbeing] ) are 
static, defined by the modeler. But they would be a natural place to couple SCAMP’s 
directed graph to external sensors or other reasoning modules, extending it from an off-
line planning and modeling tool to a real-time control system.

–	 The stigmergic process of making and sensing quantitative changes provides a simple 
interface for adding new perspectives. For example, a computer network perspective 
could model a cyber attacker traversing a network, and a resource perspective could 
model events that produce and consume resources.

–	 Analytic versions of U (in conventional GCMs) and algorithmic versions (in an MAS) 
are not mutually exclusive. The representational benefits of agent-based over equation-
based models are well documented [52], but these benefits come at the cost of increased 
computational complexity and slower execution. It would be interesting to explore 
hybrid mechanisms for U that combine both analytic and agent-based mechanisms. For 
example, how could stigmergic agents enhance the update process on directed graphs 
whose nodes represent variables rather than events?

–	 We are exploring the use of genetic methods to tune a SCAMP model (including both 
the agents and the structure of the environment) to match observations [44].

–	 Because U operates by modifying individual elements of N, it is well suited to paral-
lelization by distributing the environment on a GPGPU [21], greatly accelerating its 
performance.
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–	 The presence features over N form (up to normalization) a probability field indicating 
where we may expect to find agents. The expression “probability field” is most com-
mon in quantum physics, where it describes the amplitude of a particle’s wave func-
tion, giving the probability that when the wave function is collapsed by observation, the 
particle will be found at each location. The quantum parallel to SCAMP goes further. 
Feynman’s path formalization of quantum theory [10] (originally inspired by ant behav-
ior) imagines that a particle follows every possible path, and sums its contributions to 
obtain this field. While ghost agents do not explore every possible path, they do sam-
ple many of them to compute SCAMP’s probability field. These parallels suggest that 
mathematics from quantum field theory might offer powerful tools for analyzing the 
results of SCAMP simulations.

–	 One could cast the insights in this paper in the framework of category theory by defin-
ing a category of GCMs, identifying the various models we have considered (including 
SCAMP) as objects in this category, and exploring morphisms among them. Such an 
analysis would enrich our understanding of both MASs and more generic GCMs, and 
support the development of hybrid architectures.

Appendix 1: Details on other graphical causal models

This appendix describes each formalism (other than SCAMP) listed in Table 1, and gives 
an example of it. These examples build on the children’s rhyme introduced in Sect. 4:

Little Miss Muffet sat on a Tuffet
Eating her curds and whey.
Along came a spider, and sat down beside her,
And frightened Miss Muffet away.

We illustrate how each formalism might represent the causal relations involving whether 
or not Miss Muffet is at the Tuffet. The formalisms fall into several classes, grouped by the 
horizontal lines within Table 1.

Non‑computational

Some formalisms are intended primarily for human examination. The semantics for nodes 
and their values (and in one case, for edges) are quite loose, and updating U is an informal 
subjective assessment by the practitioners.

Factor tree analysis (root cause analysis) includes several causal graphs used in indus-
try. These graphs are for human review rather than automatic analysis, so the nodes, val-
ues, and update mechanisms are not formalized. One example is the Ishikawa or fishbone 
diagram [26], used to trace the causes of quality problems in manufacturing. In this model, 
the top-level causes are pre-defined branches (e.g., Equipment, Process, People, Materi-
als, Environment, Management), to lead analysts to consider different areas where quality 
problems may arise. Edges leading into each of these branches are primary causes; they in 
turn support secondary causes, and so forth. The lower level nodes are verbal descriptions 
of causes, and may be events (e.g.,“shipments delayed”), measurable observations (“rusty 
components”), or even prepositional phrases. Figure 8 shows a simple fishbone diagram 
for the problem “Miss Muffet not on Tuffet,” This diagram suggests that the problem may 
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result from difficulties with material (lack of curds and whey), personnel (Miss Muffet ill), 
or the environment (presence of a spider).

Such diagrams contribute greatly to the quality of manufactured products, but are too 
ambiguous for formal analysis.

The nodes in causal loop diagrams [74] are understood to have scalar values, though 
they are not evaluated. Edges are labeled with a + if an increase in the source promotes 
an increase in the destination, and a - if an increase in the source promotes a decrease in 
the destination. Optionally, a double slash // indicates an unspecified time delay. Figure 9 
shows a causal loop diagram for Miss Muffet. The left-hand loop means that she will only 
sit on the Tuffet if she has something to eat, but the longer she is there, the less curds and 
whey will remain. The right-hand loop means that she eventually attracts the lonely spi-
der, who scares her away. Causal loop diagrams, unlike many other formalisms, do support 
causal loops, and the (informal) updating U for a given node is understood to reflect the 
changes in the node’s value over time.

While the causal loop diagram is qualitative and not quantitative, it is the basis for the 
stock-and-flow model, discussed in “Other analytic models” section in Appendix 1, which 
supports a set of ordinary differential equations and can thus yield quantitative results.

Correlation

Sewall Wright’s path diagrams [77] are the basis for modern structural equation models 
(SEMs) [2, 76] and marginal structural models (MSMs) [63], and an inspiration for Bayes-
ian Causal Diagrams [54]. Path diagrams compute correlations between variables con-
nected either directly or indirectly by directed edges. The update mechanism U computes 
the correlation between end points of a path as the product of correlations along a single 
path, and as the sum of correlations entered by different paths. Extensions estimate the val-
ues of latent variables based on observed variables and compute conditional probabilities 
throughout the graph under assumptions of causal influence, but say nothing about how 
these conditional relations occur. Path diagrams do not represent time or allow cycles, and 
U propagates node values through the graph at a single point in time. Figure 10 shows a 
simple path diagram for Miss Muffet. The nodes representing the presence of Miss Muffet 
and of the spider at the Tuffet are binary.

Fig. 8   Factor tree for Miss 
Muffet

Fig. 9   Causal loop diagram for 
Miss Muffet
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Probabilistic

Bayesian causal diagrams [53] are a dominant causal formalism, commonly used in 
planning experiments and selecting experimental variables. Figure  11 shows a simple 
causal diagram for Miss Muffet. Nodes carry probabilities. U evaluates these probabili-
ties by multiplying the probability of cause nodes through conditional probability tables 
attached to each effect node. One application of such graphs uses convention rather 
than computation for U. Because of the formalism’s probabilistic semantics, the pattern 
of connections alone can be used for experimental design, identifying what variables 
should and should not be observed to confirm a causal hypothesis.

These graphs have two shortcomings. First, like path diagrams, the underlying math-
ematics does not allow cycles or support time intrinsically (though temporal extensions 
have been proposed [39]). Second, computation over probabilities requires complete 
conditional probability tables on the nodes, and these are hard to procure, particularly 
for non-repeatable social situations offering limited data.. The latter problem has moti-
vated the development of “canonical models” [9] that make simplifying assumptions 
about the relations among the nodes in order to reduce the parameters needed to evalu-
ate the model.

One example of a canonical model is the Influence Net [64]: nodes are events with base-
line probabilities. Edges can be supporting or inhibitory, and contain two probabilities: that 
the effect will obtain if the cause is true, and if the cause is false. U propagates these val-
ues across a net—again, at a single point in time. The method recognizes the importance 
of events rather than variables as nodes, but characterizes them simply by probability of 
occurrence, treating them as propositions of the form “Event X occurred” to which belief 
values can be assigned.

Another canonical simplification of the Bayesian causal graph is the Causal Influence 
Model [55], whose nodes can be Boolean, ordinal, or categorical. They have a baseline 
probability (if categorical, a baseline probability for each option), and the connection 
between two nodes is an influence in [− 1, 1] on the probability of the target. U updates the 
baseline probability of the child node based on a function (typically the mean) of the influ-
ences of its parents.

Influence diagrams

Influence diagrams are a large and important family of GCMs. Their central feature is the 
distinction between decision nodes (reflecting agent choices) and uncertainty or chance 
nodes (reflecting chance events). Chance nodes may model questions or experiments that 
the decision maker can perform, with various probabilities of outcomes. This distinction 

Fig. 10   Path diagram for Miss 
Muffet

Fig. 11   Causal diagram for Miss 
Muffet
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emerged from an earlier formalism, decision trees, which constrained the order of evalu-
ation of the two node types to be a tree, as alternate moves in a game between the deci-
sion maker and a partner named “chance” [60]. Influence diagrams ([24], reprinted as [25]) 
remove this ordering dependency, yielding directed acyclic graphs. In both decision trees 
and the earliest influence diagrams, the expected payoff from a node is associated with the 
outgoing edge corresponding to the choice that the decision-maker or chance has made. 
Later formalisms define value or utility nodes to record these payoffs.

Figure 12 shows a fragment of a decision tree (left) and influence diagram (right) for 
Miss Muffet. The outcome of the chance node “Is spider at tuffet?” depends on whether 
Miss Muffet decides to visit the tuffet on her walk, and the presence or absence of the spi-
der determines whether she remains at the tuffet to finish her snack, or leaves prematurely. 
Influence diagrams are a specialization of probabilistic GCMs, and their update mecha-
nisms U are based in one way or another on the chain rule and Bayes rule, with a variety 
of algorithmic refinements, such as message passing [33] and variable elimination [36], to 
name only a few.

Influence diagrams represent two advances over the formalisms considered so far. 

1.	 They formally introduce a primitive notion of agency. Decision nodes are under the 
control of one distinguished agent (the decision maker), while the chance node captures 
both aleatoric uncertainty and epistemic uncertainty (including the actions taken by 
all other agents). Thus the agent modeled by the diagram has a sense of self vs. other. 
However, there is no notion of group affiliation, and no individual state.

2.	 Chance and decision nodes represent choices among different actions, while value or 
utility nodes represent variables. Intuitively, variables (the nouns and adjectives in a 
scenario) do not cause anything. Influence diagrams recognize that causality should be 
a relation among events, the verbs of the scenario.

Numerous refinements of influence diagrams (IDs) have been developed. For example:

–	 partial IDs (PIDs) [38]) relax the condition that the decision variables be ordered tem-
porally;

–	 limited memory IDs (LIMIDs) [33] relax the assumption that previous observations are 
remembered and considered in all future decisions;

–	 unconstrained IDs (UIDs) [28] and sequential (SIDs) [27] relax the order of observa-
tions;

–	 dynamic IDs (DIDs) [20] allow chance nodes to change state, and incorporate cycles.

Of particular importance to the MAS community is the extension of influence diagrams to 
multi-agent scenarios by distinguishing multiple agents. For example:

Fig. 12   Partial decision tree (left) and influence diagram (right) for Miss Muffet
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–	 multi-agent IDs (MAIDs) [31] incorporate separate decision and utility variables for 
each agent in a single influence diagram.

–	 ID networks (IDNs) [14] and networks of IDs (NIDs) [15] construct a digraph of 
MAIDs, then solve them from the leaves to yield a single MAID incorporating relevant 
chance nodes that represent their solutions.

–	 interactive dynamic IDs (I-DIDs) [56] nest DIDs, allowing agents to model one another.

One particularly important derivative of influence diagrams is the Partially Observable 
Markov Decision Process (POMDP) [29] (e.g., [58]), with three types of nodes. Like a 
Markov process, a POMDP defines a set S of states and transition probabilities among 
them. Like a Markov decision process (MDP), it augments the set of states with a set � of 
actions � that some agent can take, based on the current state. The agent chooses among 
available actions to maximize its reward function R ∶ Sx𝔸 → ℝ , which typically computes 
the expected time-discounted future reward for each available action. A set of transition 
probabilities T(s�|s, �) computes the system’s next state, conditioned on the present state 
and the action chosen, generalizing the transition probabilities in the simple Markov pro-
cess. A POMDP further adds a set of observations � (corresponding to the chance nodes 
in a primitive influence diagram) derived from the world state through a set of observation 
probabilities O(�|s, �) conditioned on the state being observed and the action that brought 
the agent into that state. Thus the next action in a POMDP is driven by the state of the 
world probabilistically, not deterministically.

Like the other formalisms in this paper, the POMDP lends itself to representation as a 
directed graph. The nodes are states, actions, and observations, and edges are conditional 
probabilities from T and O. Though rewards are strictly speaking a function over actions 
and states, the common use of influence diagrams as a representation for POMDPs [75] 
leads to the convention of representing them as additional nodes in the graph. Figure 13 
shows a fragment of a POMDP for Miss Muffet in her decision to leave the Tuffet.

Like other Markov processes, POMDPs can revisit a state more than once, and so sup-
port cycles. They offer a partial solution to representing time and agency. For tractability, 
POMDPs in agent-based systems use a discrete time model with a constant period of time 
between successive actions. Thus the model captures time, but all actions have the same 
duration. POMDPs also incorporate agency, because an agent performs each action. Exten-
sions [56] assign different agents to different actions. However, agency is at the level of 
individual agents, without intrinsic support for groups of agents, and state nodes capture 
(an agent’s view of) the state of the environment (including other agents), not the personal 
state of the agent. In addition, POMDPs require model builders to think in terms of transi-
tion probabilities, rather than psychological primitives from which probabilities are gener-
ated by the model.

Fig. 13   POMDP for Miss Muffet
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Other analytic models

Fuzzy cognitive maps (FCMs) [32] are inspired by feed-forward neural networks. Nodes 
are concepts, and may include variables, events, and entity names. Values V on FCMs are 
activation levels derived from the intrinsic value of the category and scaled (depending 
on the domain) either to [0, 1] or [− 1, 1], and edges are weights in [− 1, 1]. U consists of 
multiplying the activation of a node’s causes by weights and summing, usually through a 
thesholding function to maintain activation bounds. This process, unlike the probabilistic 
theory behind causal diagrams, permits causal cycles (as in a recurrent neural network). 
Thus U is not simply propagating causality at a single time throughout the graph, but gen-
erating the dynamics exhibited by node values over time, though FCMs have no quantita-
tive representation of time.

Figure 14 is a toy FCM for Miss Muffet illustrating the informality of concepts. This 
imprecision extends to the meaning of activation. If concepts are viewed as events, then 
activation is reasonably understood as probability of occurrence. If they are statements, 
activation becomes level of belief. The informality of its semantics and the ease with which 
multiple models of the same domain can be combined makes the method attractive for 
participatory modeling involving mathematically unsophisticated domain experts [17]. For 
such users, activation is a surrogate for node probability in indicating the prominence of a 
concept, but is not constrained to a formal probabilistic semantics.

Though causal loop diagrams (“Non-computational” section in Appendix  1) do not 
directly support computation, they are often the first step to a System Dynamics model 
[12]. This formalism is inspired by physical theories and is based on ordinary differential 
equations (ODEs) rather than Bayesian probability. Nodes evaluate to variables that are 
transformed into one another by the edges, using a metaphor of fluid flow often described 
as “stocks and flows.” Stocks correspond to variables in an ODE, while flows correspond to 
first derivatives. Time is intrinsic to the behavior of a differential equation, so these mod-
els allow feedback loops and characterize the system’s behavior over time. U consists of 
integrating the equations through time. As a continuous formalism, ODEs deal more eas-
ily with real-valued quantities than Boolean or integer values, and we adjust our running 
example to accommodate the following variables:

–	 c amount of curds and whey available
–	 s spider population near Tuffet
–	 m Miss Muffet population on Tuffet

Figure 15 shows a few ODEs and the corresponding directed graph for Miss Muffet, based 
on these variables. �, �, �, � are the transition rates for the ODEs.

Like probabilistic models and unlike factor trees and fuzzy cognitive maps, the values 
associated with the nodes of System Dynamics models have clearly defined mathematical 

Fig. 14   Fuzzy cognitive map for 
Miss Muffet

Fig. 15   ODE model for Miss 
Muffet
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meaning, but with very different semantics: ODEs support cycles and quantitative time, 
while probabilistic models do not. The difference is due to the difference in U. In an ODE 
U evolves node values through time, but in a probabilistic model it simply propagates node 
values to achieve a consistent labeling at a point in time.

A Stochastic Petri Net (SPN) [19] is a bipartite digraph whose nodes alternate between 
integer-valued places (thus, variables) and transitions that can have durations (thus mod-
eling the passage of time) and activation probabilities (thus “stochastic”). U is algorithmic 
rather than analytic: a transition is eligible to fire when all of its input places are greater 
than 0, and when it fires, it decrements each input place by 1 and augments each output 
place by 1. If a transition does not have the same number of input and output places, the 
total value of places in the net is not conserved. A place’s value is sometimes called its 
marking and represented graphically by dots. Figure 16 is an SPN for a fragment of Miss 
Muffet. Circles represent places, while rectangles represent transitions.

The reader can verify from Fig. 16 that

–	 Miss Muffet requires curds and whey to sit on the Tuffet.
–	 When she sits down, the amount of curds and whey decreases.
–	 The spider requires Miss Muffet to be on the Tuffet in order to come near the Tuffet.
–	 Miss Muffet’s departure from the Tuffet requires both that she is on the Tuffet, and that 

the spider has approached.
–	 Miss Muffet and the spider are conserved, while the curds and whey are not.

SPNs can be represented (within continuity constraints) as sets of ODEs [4] and thus eval-
uated by integration. Unlike system dynamics diagrams but like influence diagrams, they 
distinguish between variables and the events that change them. Unlike influence diagrams, 
they do not capture agency. In Fig. 16, the markings for Miss Muffet and the spider are not 
agents that participate in events, but semaphores that enable the events.

Discussion of conventional methods

None of the four desirable features we summarized at the beginning of Sect. 3 is uniformly 
supported by all methods. The most common is column 6 in Table 1, probabilistic estimate 
of effects resulting from causes, formally supported in seven of the 11 formalisms. Col-
umn 7 (cycles and feedback) is supported in only six of the formalisms, and a quantitative 
estimate of time (column 8) in only four. Only influence diagrams (including POMDPs) 
support agency. One can always encode a particular agent as a causal node, but without a 
sense of an event, it is difficult to formalize the agent responsible for the event. Even the 
Influence Net, whose nodes are events, simply estimates the probability of their occurrence 

Fig. 16   Stochastic Petri Net for 
Miss Muffet
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rather than representing their action. Even influence diagrams do not capture the effect of 
an agent’s history on its decisions.

No formalism considered so far has a clear semantics of group agency. Psychological 
and social features are naturally associated with the different groups of agents involved in 
a scenario. Again, one can always instantiate a social or psychological feature as a causal 
node, but the treatment is ad-hoc and not integral to the formalism. This observation sug-
gests that agent-based models, with their explicit semantics of agency and action, can fill 
an important gap in modeling causality. Influence diagrams do have a natural notion of 
agency for individual agents, but the representation is restricted to probabilities. SCAMP 
provides a much richer set of modeling artifacts to capture important psychological and 
sociological features.

Appendix 2: Symbols

Table 5 summarizes the symbols used in this paper.

Table 5   Symbols used

Symbol Meaning

A Set of agents a in a SCAMP model
� Set of actions � in a POMDP
C GCM, defined as ⟨N,V ,E,U⟩
E Set of edges e in a GCM
F Mapping N → V

F1 F on CEG node restricted to wellbeing, urgency, and presence features
F2 F on CEG node restricted to agency
F3 F on CEG node restricted to nominal duration
F4 F on HGN goal restricted to satisfaction
F5 F on HGN goal restricted to urgency
G Set of groups g in a SCAMP model
� Directed graph ⟨N,E⟩
� Set of goals � in SCAMP’s HGNs; may be restricted to a group g
GpIndex Map from groups G, agents A, or goals �  to an integer group index
N Set of nodes m and n in a GCM
O Set of observation probabilities in a POMDP
� Set of observations � in a POMDP
P Preference vector of an agent a or a group g
R Reward function in a POMDP
ℝ Real numbers
S Set of states s in a POMDP
Succ Map from CEG nodes N to their successors along agency edges
T Set of transition probabilities t in a POMDP
U Update mechanism V → V ′ in a GCM
V Set of values that N can have in a GCM
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