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ABSTRACT 
When the same set of people interact frequently with one another, 
they grow to think more and more along the same lines, a 
phenomenon we call “collective cognitive convergence” (C3). In 
this paper, we discuss instances of this phenomenon and why it is 
advantageous or disadvantageous; review previous work in 
sociology, computational social science, and evolutionary biology 
that sheds light on C3; define a computational model for the 
convergence process and quantitative metrics that can be used to 
study it; report on experiments with this model and metric; and 
suggest how the insights from this model can inspire techniques 
for managing C3.  

Categories and Subject Descriptors 
J.4 [Computer Applications]: Social and Behavioral Sciences – 
Sociology; I.6.3 [Simulation and Modeling]: Applications 

General Terms 
Measurement, Experimentation, Human Factors, Theory. 

Keywords 
Groupthink, cognitive convergence, modeling, social simulation. 

1. INTRODUCTION 
When the same set of people interact frequently, they grow to 
think more and more along the same lines. We call this 
phenomenon “collective cognitive convergence” (C3), since the 
dynamics of the collective lead to a convergence in cognitive 
orientation.  

C3 arises in many contexts, including research subdisciplines, 
political and religious associations, and even persistent 
adversarial configurations such as the cold war. Tools that support 
collaboration, such as blogging, wikis, and communal tagging, 
make it easier for people to find and interact with others who 
share their views, and thus may accelerate C3. This efficiency is 
sometimes desirable, since it enables a group to reach consensus 
more quickly. For instance, in the academy, it enables coordinated 
research efforts that accelerate the growth of knowledge.  

But convergence can go too far, and lead to collapse. It reduces 

the diversity of concepts to which the group is exposed and thus 
leaves the group vulnerable to unexpected changes in the 
environment. Here are two examples. 

In academia, specialized tracks at conferences sometimes become 
unintelligible to those who are not specialists in the subject of a 
particular track, and papers that do not fit neatly into one or 
another subdiscipline face difficulty being accepted. The 
subdiscipline is increasingly sustained more by its own interests 
than by the contributions it can make to the broader research 
community or to society at large.1  

In military operations, the force-on-force orientation developed 
during the Cold War left both the former Soviet Union and NATO 
ill-prepared to deal with insurgencies and asymmetric warfare.  

Groups that have undergone cognitive collapse will only produce 
output conforming to their converged set of ideas, and will be 
unable to conceive or explore new ideas. In the worst case, 
collapse may lead a group to focus its attention on a cognitive 
construct with little or no relation to the real world. For example, 
highly specialized academic disciplines become increasingly 
irrelevant to people outside of their own circle. 

We became interested in this phenomenon by observing 
increasing balkanization in the research field of multi-agent 
systems. Since we work in the area of multi-agent simulation, it 
occurred to us that some light might be shed on the phenomenon, 
and on how it can be managed, with a multi-agent model. This 
paper presents some preliminary results. 

Section 2 discusses previous work related to our effort. Section 3 
describes our model, and a metric that we use to quantify C3. 
Section 4 outlines a series of experiments that exhibit the 
phenomenon and explore possible techniques for managing it. 
Section 5 suggests directions for further research, and Section 6 
concludes. 

2. PREVIOUS WORK 
Our research on C3 builds on previous work in sociology (both 
empirical and theoretical) and evolutionary biology. 

                                                                 
1 This paper was motivated by frustration voiced in the industry 

track at AAMAS07 about how some subdisciplines of agent 
research were becoming so intellectually ingrown, focusing 
only on problems defined by other members of the 
subdiscipline, that it was difficult or impossible to apply them 
to real problems. 
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There is abundant empirical evidence that groups of 
people who interact regularly with one another tend 
to exhibit C3. Sunstein [24] draws attention to one 
version of this phenomenon, “group polarization”: a 
group with a slight tendency toward one position 
will become more extreme through interaction. This 
dynamic suggests that confidence in group 
deliberation as a way of reaching a moderating 
position may be misplaced. He summarizes many 
earlier studies, and attributes the phenomenon to 
two main drivers: social pressure to conform, and 
the limited knowledge in a delimited group. Our model captures 
the second of these drivers, but not the first. Sunstein suggests 
some ways of ameliorating the problem that we explore with our 
model. 

Computational social science has long been preoccupied with the 
dynamics of consensus formation. One recent review [13] traces 
relevant work back more than 50 years [10]. These studies include 
analysis, simulation, or sometimes both. Their models differ along 
several important dimensions, including include the belief model 
and three characteristics of agent interaction (topology, arity, and 
preference). Rather than attempting an exhaustive review, we 
situate our work in these dimensions. 

• The model of an agent’s belief can be either a single variable or 
a vector, with values that can be real, binary, or nominal. 
Vector models usually represent a collection of beliefs, but in 
one study [3] the different entries in the vector represent the 
value of the same belief that underlies different behaviors, to 
explore of internal consistency.  

• In some models agent interactions are constrained by agent 
location in an incomplete graph, usually a lattice (though one 
study [17] considers scale-free networks). In others any agents 
can interact (often called the “random choice” model). 

• Agents to interact only two at a time, or as larger groups. 
• The likelihood of agent interaction may be modulated by their 

similarity. 

Table 1 characterizes several papers in this area in terms of these 
dimensions. Our work represents a unique combination of these 
characteristics. In particular, 

• We consider a vector of m beliefs, rather than a single belief. 
This model allows us to look at how an individual may 
participate in different interest groups based on different 
interests, but also makes describing the dynamics much more 
difficult than with a single real-valued variable. In the latter 
case, individuals move along a linear continuum, and measures 
such as the mean and variance of their position are suitable 
metrics of the system’s state. In our case, they live on the 
Boolean lattice {0,1}m of interests, and our measures must 
reflect the structure of this lattice.  

• We allow many individuals to interact at the same time. This 
convention captures the dynamics of group interaction more 
accurately than does pairwise interaction, but also means that 

                                                                 
2 [9] finds faster convergence when some elements in the vector 

function as interval variables. 
3 All entries reflect the same belief in different behavioral 

settings, and pressure toward internal consistency is part of the 
model dynamics. 

our agents interact with a probability distribution over the 
belief vector rather than a single selection from such a 
distribution. 

• We allow our agents to modulate the likelihood of interaction 
based on how similar they are to their interaction partners. 
This kind of interest-based selection is critical to the dynamics 
of interest to us, but makes the system much more complex. 

One consequence of selecting the more complicated options along 
these dimensions is that analytic results, accessible with some 
(but by no means all) simpler models, become elusive. Almost all 
analytical results in this discipline are achieved by modeling the 
belief of agent i as a single real number xi and studying the 
evolution of the vector x over time as a function of the row-
stochastic matrix A whose elements aij indicate the weight 
assigned by agent i to agent j’s belief, x(t+1) = Ax(t). This model 
captures interaction arity greater than two, but not vector beliefs 
or agent preferences. Conditions for convergence under 
preferences have been obtained [16], but only for six or fewer 
agents [13]. Bednar et al. [3] have derived convergence times for 
a form of vector belief, but only for binary interactions and with 
no preferences. Even for binary interactions, the combination of 
vector-based beliefs and preferences has resisted analytical 
treatment (in studies of an isomorphic system, bisexual 
preferential mating [14, 21]). 

Given this research context, in this paper we focus our attention 
on simulation results, to develop intuitions that may reward future 
analytical exploration. 

The subgroups that form and cease to interact when convergence 
turns to collapse are reminiscent of biological species, which do 
not interbreed. So we look for insight to research in the field of 
biological speciation (see [5, 11] for reviews). The most 
commonly proposed speciation mechanisms are allopatric 
speciation, sympatric speciation, and parapatric speciation. In 
allopatric speciation, genetic barriers gradually evolve between 
two or more geographically isolated species. This might happen 
for instance between organisms living on separate islands. These 
barriers could evolve either through natural selection or through 
other means such as the founder effect (i.e., differences in genes 
between populations due to the small sample sizes of the founding 
populations). One configuration of our model can be interpreted 
as exhibiting allopatric speciation.  

In parapatric speciation, there is no discrete barrier between 
populations; individuals are distributed along a geographic 
continuum and are separated by distance. Finally, sympatric 
speciation refers to instances where a single population with no 
physical or geographic gene flow barriers divides into separate 
species. Two interacting forces are required for sympatric 
speciation to occur: 1) a force that drives sympatric speciation 

Table 1: Representative Studies in Consensus Formation 

Study Belief Topology Arity Preference? 
Krause [16] Real variable Random Many Yes 
Sznajd-Weron [25] Binary variable Lattice Two No 

Real variable Random Two Yes Deffuant [6] Binary vector Random Two Yes 
Axelrod [2] Nominal2 vector Lattice Two Yes 
Bednar [3] Nominal vector3 Random Many No 
This paper Binary vector Random Many Yes 



 

(e.g. resource competition or sexual selection) and 2) assortative 
mating that generates phenotypic variability and maintains 
evolving phenotypic clusters that eventually become species. 
Assortative mating refers to a mating system where different 
individuals express preferences for different phenotypes (e.g. 
some female birds prefer males with red feathers and other 
females prefer males with blue feathers). Some configurations of 
our model correspond to sympatric speciation. 

Sexual selection [1, 8] roughly refers to the differential mating 
success of individuals in a population, Sexual selection can either 
be based on an asymmetric mating system (males compete and 
females choose) or a symmetric mating system (mutual mate 
choice where both sexes compete and choose). One sexual 
selection mechanism is Fisher’s runaway process, which leads to 
extravagant traits in males that are detrimental to their survival. 

While the relative importance and frequency of these speciation 
mechanisms in nature are still heavily debated, the mathematical 
prerequisites for each mechanism have been extensively studied 
[5, 11, 15]. This work could be adapted to predict when and how 
C3 will develop, and how it can be managed. 

Our C3 model can be considered an instance of a runaway sexual 
selection speciation model with mutual mate choice. We assume a 
homogenous environment, no physical barriers for the exchange 
of ideas and a symmetric “mating system” where individuals 
express their “mating preferences” (i.e. their preference for an 
atomic interest; see Section 3 below) mutually. In our 
model, a preference for extreme traits is modeled as the 
probability of adopting an interest based on the 
prevalence of this interest in a given neighborhood. A 
successful runaway process in our model can be viewed 
as the development of academic specializations with 
little practical relevance.  

There has also been much theoretical work done to study 
the amount of gene flow or migration that is necessary to 
prevent isolated populations of organisms from diverging 
or losing diversity due to genetic drift, or sampling error 
[12]. Sewall Wright argued in his Shifting Balance 
Theory that a subdivided population with intermittent 
migration could exhibit more rapid evolutionary change 
than a single cohesive breeding population [22]. The 
mathematical frameworks for studying migration could 
be applied to modeling the exchange of ideas or 
individuals between groups in C3, and the amount of 
exchange that is necessary to prevent intellectual 
isolation.  

3. A MODEL AND METRICS 
We have constructed a simple multi-agent model of C3 to 
study this phenomenon. Our model represents each 
participant’s interests as a binary vector. Each position in 
the vector corresponds to an atomic interest. A ‘1’ at a 
position means that the participant is interested in that 
topic, while a ‘0’ indicates a lack of interest. At each 
step, each participant 

• identifies a neighborhood of other participants 
based on some criteria (which may include 
proximity between their interest vectors, 

geographical proximity, or proximity in a social network, 
criteria that correspond to differences among various forms 
of biological speciation), 

• learns from this neighborhood (by changing an interest j 
currently at 0 to 1 with probability pinterest = proportion of 
neighbors having interest j set to 1), and  

• forgets (by turning off an interest j currently at 1 to 0 with 
probability 1 – pinterest). 

One boundary condition requires attention. If an agent has no 
neighbors, what should pinterest be? We take the view that interests 
are fundamentally social constructs, persisting only when 
maintained. Thus an isolated agent will eventually lose interest in 
everything, and in our model, a null community leads to pinterest = 
0 for all interests. Alternative assumptions are certainly possible, 
and would lead to a different model. 

We need quantitative measures of agent convergence to study C3 
systematically. (Sophisticated statistical techniques exist for 
estimating the consensus of a group of people empirically, based 
on their responses to questionnaires [23]. For our purposes, the 
abstract measures here are more suitable.) To derive our 
measures, we cluster the population hierarchically based on 
cognitive distance between agents (in our case, the Jaccard 
distance between their interest vectors). Each node of the 
resulting cladogram forms at a specific distance (the “diameter” 
of the cluster represented by that node). The root has the highest 
diameter. In a random population of agents, the distances at which 
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Figure 1 Random interest vectors, median min-max ratio = 0.583.  

74 86 81 93 92 91 89 85 84 83 78 75 88 82 80 76 77 90 87 79
0.0

0.2

0.4

0.6

0.8

1.0

D
is

si
m

ila
ri

ty

 
Figure 2 A highly converged population, median min-max ratio = 0 



 

lower-level nodes join the tree is not much less than the diameter 
of the root (Figure 1), while in highly converged populations, the 
diameters of lower-level nodes are much less than the diameter at 
the root (Figure 2, where agents grouped at diameter 0 have 
identical interest vectors). Thus we compute the ratio of node 
diameter to root diameter (the “min-max ratio”) for each node, 
and use the median of this ratio as a measure of overall system 
convergence. A ratio of 0 (as in Figure 1) means that more than 
half of the agents belong to groups within which all interest 
vectors are identical. We also record the maximum diameter of 
the clustered population at each generation. Convergence can lead 
to a diameter of 1 (when the population fragments into groups 
with orthogonal interest vectors that collectively span the interest 
space), a low value, asymptotically 0 (when all agents collapse 
toward a single group that is restricted to a single point in the 
interest space), or intermediate values (when groups have 
overlapping interests but no way to communicate about them to 
drive further convergence). 

Figure 3 shows the behavior of the min-max ratio over a sample 
run of the system with 20 agents and interest vectors of 
length 10, where the probability of learning and 
forgetting is equal, and where agents are considered to be 
in the same group if the similarity between their interest 
vectors (the similarity threshold) is greater than 0.5. It 
takes only about 80 generations for the median min-max 
ratio to reach 0. (A generation consists of selecting one 
agent, choosing its neighbors, choosing with equal 
probability whether it shall attempt to learn or forget, 
selecting a bit in its interest string at random, then if it is 
learning and the bit is 0, flipping the bit with probability 
plearn * pinterest, or if it is forgetting and the bit is on, 
flipping the bit with probability pforget * (1 pinterest.)) 
Figure 2 shows the state of this system at generation 300. 
By generation 370 it has collapsed into two groups of 
completely homogeneous agents of sizes 3 and 17 
respectively. The diameter of the overall population in 
this configuration is 1, representing orthogonal interest 
vectors. Among themselves, the agents still cover the 
entire interest space, but because they choose to interact 
only with the agents nearest themselves in that space, 
they form separate islands that cannot interact.  

4. SOME EXPERIMENTS 
Armed with this model and metric, we can explore the 
dynamics of C3 under a variety of circumstances. As we 
might expect, forming neighborhoods based on similarity 
of interest leads to rapid cognitive convergence. But 
surprisingly, other sorts of neighborhoods also lead to 
convergence. 

4.1 Things that Don’t Work 
We might think that highly tolerant agents, those that 
consider all agents their neighbors, might be more robust 
to convergence. Figure 4 shows the evolution of the same 
population of agents when two agents consider one 
another neighbors if their similarity is greater than 0 (that 
is, they have at least one bit position in common). This 
configuration might be a model for a conference that has 

only plenary sessions. The population still collapses—this time, 
toward a maximum diameter of 0, indicating that the entire 
population tends to a single point in interest space. 

Perhaps the problem is that as agents converge, their 
neighborhoods increase in size. Figure 5 shows the effect of 
defining an agent’s neighborhood at each turn as the group of four 
other agents that are closest to it. This configuration models a 
conference with separate tracks, organized by the common 
interests of their members. It corresponds to sympatric speciation: 
the assortative component is provided by the preference for 
partners with similar interests, while the limit on group size 
provides pressure toward diversity. Though agents base their 
adaptation at each turn on only 20% of the other agents, the min-
max ratio still goes to zero, as agents form subgroups within 
which interests collapse. The maximum diameter freezes at an 
intermediate value (in this case, 0.6). The population has lost 
some but not all of its variation, but as in Figure 3, the selection 
of partners by interest proximity means that agents never interact 
with those who differ with themselves. 
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Figure 3 Evolution of 20 agents with length-10 interest vectors, 

neighborhoods defined by similarity > 0.5 
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Figure 4: Zero Threshold 



 

Figure 6 shows an even more radical approach. Here an 
agent’s neighbors at each step are four randomly chosen 
agents. Imagine a conference at which papers are 
assigned to tracks, not by topic, but randomly. In spite of 
the mixing that this random selection provides, the 
population again collapses. The population diameter in 
this case asymptotes to 0, a single point in interest space 

These examples differ in how long it takes the system to 
converge to a min-max ratio of 0. The time to 
convergence is highly variable, even within a single 
configuration. Repeated runs show that we should not 
assume that because (say) Figure 5 converges faster than 
Figure 4, small groups will always lead to faster 
convergence than highly tolerant agents. The one 
constant across all runs is that the system does converge, 
in fewer than 500 generations (often far fewer).  

4.2 Introducing Variation 
The collapse of agent interests is abetted by the lack of 
any mechanism for introducing variation. Once the 
population loses the variation among agents, it cannot 
regain it. We have explored three mechanisms for adding 
variation to the population: random mutation, 
curmudgeons, and interacting subpopulations. 

The simplest approach is mutation. At each generation, 
with some small probability pmutate, after learning or 
forgetting, the active agent selects a bit at random and 
flips it. This mechanism models spontaneous curiosity on 
the part of agents. Figure 7 shows an extended run with 
parameters the same as in Figure 3 (neighborhoods 
defined by a similarity threshold of 0.5), but with pmutate 
= 0.03. Mutation is certainly able to reintroduce 
variation, but the level is critical. If mutation is too low 
(say, 1%), it is unable to keep up with the pressure to 
convergence, while if it is too high (10%), the 
community does not exhibit any convergence at all (and 
in effect ceases to be a community). The nature of its 
contribution follows a clear pattern. When it is in the 
critical range, the system occasionally collapses to a min-
max ratio of 0, but then discovers new ideas that 
reinvigorate it. The population diameter under mutation 
converges to 1, since even when mutation is too low to 
avoid collapse within groups, it can introduce new 
interest vectors that are orthogonal to the converged 
groups. 

A curmudgeon is a non-conformist, someone who 
regularly questions the group’s norms and assumptions. 
Sunstein [24] observes that “group members with 
extreme positions generally change little as a result of 
discussion,” and serve to restrain the polarization of the 
group as a whole. 

To model curmudgeons, recall that ordinarily agents 
learn by flipping a 0 bit to 1 with probability pinterest, the 
proportion of neighbors that have the bit on, and forget 
by flipping a 1 bit with probability equal to 1 – pinterest. To 
model curmudgeons, when an agent decides to learn or 
forget, with probability pcur,, it reverses these 
probabilities. That is, its probability of forgetting when it 

20 40 60 80 100
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Generation

M
in

M
ax

R
at

io

 
Figure 5 Fixed-size agent neighborhoods (four closest agents) 
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Figure 6 Neighborhoods of four randomly-chosen agents 
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Figure 7 Adding 3% mutation 



 

is curmudgeonly is pinterest (instead of 1 - pinterest in the 
non-curmudgeonly state), and its probability of learning 
is 1 – pinterest.  

Figure 8 shows the effect of 10% curmudgeons, again 
with the baseline configuration of Figure 3. The system 
clearly converges, but seldom reaches a min-max ratio of 
0. Furthermore, pcur can achieve this balancing effect 
over a much wider range than pmutate. The population 
diameter tends to 1, reflecting the addition of diversity. 
As much as researchers may resent reviewers and 
discussants who “just don’t get it,” curmudgeons are an 
effective and robust way of keeping a community from 
collapsing. 

The third source of variation is even more robust, and 
somewhat surprising, as the source of variation is 
endogenous rather than exogenous. So far, our agents 
have chosen a new set of neighbors at every step, based 
on their current set of interests. What would happen if we 
assign each agent to a fixed group at the outset, using a 
fixed similarity threshold that allows groups of various 
sizes to form?  

The behavior depends on the structure of the graph 
induced by a given threshold. Figure 9 shows how the 
number of components depends on the threshold for 
groups formed in populations of 20 agents with 10 
interests each. The sudden shift from many components at 
0.6 to a few at 0.55 is an instance of the well-known phase 
transition in random graphs in which a giant connected 
component emerges as the number of links increases [7], 
in this case as a result of lowering the threshold. Four 
cases merit our attention. 

If the threshold is very high, there are 20 components, one 
for each agent. With no neighbors to reinforce its 
interests, each agent will begin to forget them, and the 
agents will independently approach the fixed point of an 
all-zero interest string. 

If the threshold is very low, all agents will form one large 
group, and converge as in Figure 4.  

At intermediate thresholds above the phase shift, the agents clump 
into small disjoint components. For example, one run at threshold 
0.7 yielded two groups of size 3, three of size two, and eight of 
size one. Each of these groups evolves independently, yielding 
high diversity among groups (population diameter 1) but collapse 
within groups (min-max ratio of 0). This model corresponds to the 
biological concept of allopatric speciation, in which physical 
separation allows groups to evolve separately. 

For intermediate thresholds below the phase shift, the agents form 
a number of neighborhoods, but some agents (“bridging agents”) 
belong to more than one neighborhood. Figure 10 is a graph of 
one such case with threshold 0.5, with an edge between two 
agents if the similarity between those agents is greater than the 
threshold. Because neighborhoods are fixed over the run, each 
neighborhood can converge relatively independently of the others, 
but the bridging agents (in this case, for example, agent 20) 
repeatedly displace each neighborhood’s equilibrium with the 
emerging equilibrium of another group. Convergence within local 
neighborhoods provides the source of diversity that, mediated by 

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

Generation

M
in

M
ax

R
at

io

 
Figure 8 10% curmudgeons 
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Figure 9: Number of components as function of threshold: 20 agents, 10 
interest. 
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Figure 10 Neighborhood relations for threshold of 0.5 



 

bridging agents, keeps nearby neighborhoods from 
collapsing. Page [18] discusses the potential for such 
dynamics, and the model of Bednar et al. [3] can be 
aligned with this result by drawing on their observation 
that the pressure to internal consistency for a single agent 
is formally equivalent to the pressure to conformity 
among a group of agents.  

The result of this interplay of separate but linked groups 
is convergence without collapse (Figure 11). This 
mechanism, like curmudgeons and unlike mutation, 
provides robustness against intermittent collapse. It 
reflects a community with subdisciplines, but 
subdisciplines that recognize the value of members who 
bridge with other subdisciplines and exchange ideas 
between them. Such members are likely to be tolerated 
better by subgroups than would curmudgeons, because 
the source of the variation introduced by the bridging 
individuals is perceived as resulting from their 
multidisciplinary orientation rather than their orneriness. 
The population diameter under fixed groups tends to 1. 

This last mechanism is related to Sunstein’s observation that 
polarization is more likely if people feel strong solidarity with 
their group. By definition, bridging individuals are part of 
multiple groups. They are inherently less completely identified 
with any one group, and thus unlikely to be drawn completely 
into the group consensus. As a result, they can keep the group 
leavened with new ideas, protecting against collapse. 

5. DIRECTIONS FOR FUTURE WORK 
Our simple model has shown a surprisingly rich space of 
behaviors. A number of directions for further work suggest 
themselves. For example: 

• An analytical model of C3, along the lines of our previous 
work on convergence of multi-agent systems [20], would be 
valuable for suggesting additional mechanisms for 
monitoring and avoiding collapse. Existing work on the 
mathematics of biological speciation offers a promising 
foundation for this analysis. 

• How can convergence be monitored in practice? Our metric, 
while effective for simulation, is impractical for monitoring 
actual groups of people. Explicit questionnaires [23] are 
appropriate for experimental setting but cumbersome in 
monitoring groups “in the wild.” One might monitor the 
amount of jargon that a group uses, or lack of innovation, as 
indicators of convergence. A promising example of initial 
work in this area is Schemer [4].  

• We have suggested that convergence is a two-edged sword. 
What is the ideal degree of convergence, to allow the 
production of specialist knowledge without compromising 
the ability to escape collapse? 

• How does convergence vary with group size? Recent work 
[19] suggests that convergence in small groups requires 
specialized knowledge, while convergence in large groups 
requires a general knowledge base. 

• We have assumed homogeneous tendencies to learn, forget, 
mutate, or behave curmudgeonly over all agents. How does 
the system respond if agents vary on these parameters? In 
particular, what is the impact of these parameters for 

bridging individuals in comparison with non-bridging 
individuals? 

6. CONCLUSION 
It is natural for groups of people to converge cognitively. This 
convergence facilitates mutual understanding and coordination, 
but if left unchecked can lead the group to collapse cognitively, 
becoming blind to viewpoints other than their own. Experiments 
with a simple agent-based model of this phenomenon show that 
seemingly obvious mechanisms do not check this tendency. In the 
domain of academic conferences, these well-intended 
mechanisms include plenary sessions, special tracks, or even 
random mixing. A source of variation must be introduced to 
counteract the natural tendency to converge. Mutation is effective 
if just the right amount is applied, but tends to let the system 
intermittently collapse. Curmudgeons are more robust, but 
socially distasteful. Perhaps the most desirable mechanism 
consists of bridge individuals who provide interaction between 
individually converging subpopulations. These individuals arise 
when groups are well-defined, but have thresholds for 
participation low enough that some individuals can participate in 
multiple groups.  

Insights from this simple model can give guidance in monitoring 
and managing collaboration. Here are two examples. 

Our first example consists of a team of analysts searching for 
information. In this situation, management may have considerable 
influence in forming the team, and the actions available for 
managing C3 reflect this influence. For example, 

• If a group’s searches are sparsely distributed in search space, 
guide more analysts to join this group to cover more areas in 
this search space. 

• If a group’s searches are not specific enough, promote the 
splitting of groups to create smaller, specialist groups (for 
example, by introducing specialists). 

• If a certain convergence threshold is reached (perhaps 
because the search space has been exhausted), introduce a 
curmudgeon to guide the group into a new area of the search 
space. 
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Figure 11 Fixed neighborhoods induced by threshold 0.5 



 

• If in a group only a few individuals drive convergence, 
encourage less active individuals to participate more. 

• If in a group the majority of people prevent the exploration 
of novel areas in search space, artificially encourage these 
people to be more adventurous. 

As another example, consider the problem of academic 
overspecialization that prompted our research in the first place. 
The association of researchers into subdisciplines is much less 
amenable to centralized intervention. 

Our results suggest that topical conference tracks can contribute 
to collapse. The narrow focus of such tracks is enhanced by 
selecting reviewers for each paper who are experts in the domain 
of the paper. Papers must be well aligned with the subdiscipline to 
rank high with such experts, and bridging papers are at a 
disadvantage. One might envision requiring one reviewer for each 
paper to be a senior researcher (thus capable of discerning high 
quality in problem formulation and execution) but not a member 
of the paper’s main topic (and thus less disposed to exclude 
papers that cross disciplinary boundaries). Such a scheme might 
encourage the acceptance of quality papers that would otherwise 
fall in the cracks between subspecialties, and the presence of these 
papers in topically-organized conference tracks would then 
provide the bridging function that proved so successful in 
avoiding collapse in our experiments.  
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